piARNs y proteínas similares a PIWI en el Mieloma Múltiple y su futuro como biomarcadores y blancos terapéuticos

piRNAs and PIWI -like proteins in Multiple Myeloma and their future as biomarkers and therapy targets

Contenido principal del artículo

Jheremy Sebastian Reyes Barreto
Leidy Viviana Giron Jurado
Maria Paula Montoya Estrada
Iris Lorena Sánchez Moreno
Laura Tatiana Picón Moncada
Karen Luna - Orozco
Jhonathan David Guevara Ramirez
Libia Adriana Gaona Fernández
Resumen

El Mieloma Múltiple (MM) es la segunda neoplasia hematológica más común y uno de los 19 tipos de cáncer más frecuentes. Su diagnóstico es un desafío debido a la baja tasa de reconocimiento de la enfermedad, y los retrasos en el diagnóstico conducen al daño en los órganos característico de la enfermedad. Se requieren nuevos enfoques para abordar este desafío diagnóstico. La evidencia emergente muestra que los ARN interaccionantes con Piwi (piARN) promueven un aumento de la metilación en las células de MM. En este análisis, profundizamos en los últimos descubrimientos sobre la biogénesis y funciones de los piRNA, ofreciendo nuevas perspectivas sobre los posibles usos de piARNs en la detección y diagnóstico en MM. El piARN-823 aumenta en las células de MM y se correlaciona positivamente con la etapa de la enfermedad. Sus acciones tumorigénicas en el MM están relacionadas con la comunicación intercelular entre las células de MM y las células endoteliales de las venas. Estos hallazgos proporcionan la información necesaria para resaltar el posible papel del piARN-823 como biomarcador para el diagnóstico del MM.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Jheremy Sebastian Reyes Barreto, Universidad de Los Andes

Médico, Universidad de Los Andes, Colombia.

Leidy Viviana Giron Jurado, Universidad de Santander

Médica, Universidad de Santander, Colombia

Maria Paula Montoya Estrada, Grupo de investigación en cáncer y medicina molecular (CAMMO)

Bacterióloga y Laboratorista Clínica, Universidad Colegio Mayor de Cundinamarca, Colombia.

Iris Lorena Sánchez Moreno, Grupo de investigación en cáncer y medicina molecular (CAMMO)

Bióloga, Universidad Pedagógica y Tecnológica de Colombia.

Laura Tatiana Picón Moncada, Universidad Colegio Mayor de Cundinamarca

Estudiante de Bacteriología y laboratorio clínico, Universidad Colegio Mayor de Cundinamarca, Colombia. Grupo de investigación en cáncer y medicina molecular (CAMMO)

Karen Luna - Orozco, Universidad Libre

Médica Internista, Magíster en Epidemiología.

Jhonathan David Guevara Ramirez, Military University Nueva Granada

Estudiante de Ingeniería biomédica, Universidad Militar Nueva Granada.

Libia Adriana Gaona Fernández, Universidad El Bosque

 Médica Familiar. Grupo de investigación en cáncer y medicina molecular (CAMMO)

Referencias

Li B, Hong J, Hong M, Wang Y, Yu T, Zang S, Wu Q. piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene. [Internet] 2019 Jun;38(26):5227-5238. Available from: https://doi.org/10.1038/s41388-019-0788-4.

Van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. [Internet] 2021 Jan 30;397(10272):410-427. Available from: https://doi.org/10.1016/S0140-6736(21)00135-5.

Martinez H, Zapata j, Cubillos L, Multiple mieloma mortality Incidence Prevalence of Dissease- Mmy Mind study. Blood. 2020; Suplement 136(1):1-10

Asociación Colombiana de Hematología Oncología -ACHO. Guía de Práctica Clínica para el tratamiento del mieloma múltiple [Internet]. Bogota; 2020 [cited 2021 Oct 8]. 16–17. Available from: https://www.fucsalud.edu.co/sites/default/files/2020-06/GPCMIELOMA-MULTIPLE-completo.pdf.

Dima D, Jiang D, Singh DJ, Hasipek M, Shah HS, Ullah F, et al. Multiple myeloma therapy: Emerging trends and challenges. Cancers. [Internet] 2022 Aug 23;14(17):4082. Disponible en https://doi.org/10.3390/cancers14174082

Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E, Richardson P, Landgren O, Paiva B, Dispenzieri A, Weiss B, LeLeu X, Zweegman S, Lonial S, Rosinol L, Zamagni E, Jagannath S, Sezer O, Kristinsson SY, Caers J, Usmani SZ, Lahuerta JJ, Johnsen HE, Beksac M, Cavo M, Goldschmidt H, Terpos E, Kyle RA, Anderson KC, Durie BG, Miguel JF. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. [Internet] 2014 Nov;15(12):e538-48. Disponible en https://doi.org/10.1016/S1470-2045(14)70442-5

Roodman, G. Treatment strategies for bone disease. Bone Marrow Transplant [Internet] 2007; 40, 1139–1146 . Disponible en https://doi.org/10.1038/sj.bmt.1705802

Pimentel M, Espinal O, Godinez F, Jimenez F, Martinez D, Mendoza N, Quintana A, Richmond JE, Romero E. Consensus Statement: Importance of Timely Access to Multiple Myeloma Diagnosis and Treatment in Central America and the Caribbean. J Hematol. [Internet] 2022 Feb;11(1):1-7. Available from: https://doi.org/10.14740/jh971.

Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. [Internet] 2012 Apr 12;12(5):335-48. Available from: https://doi.org/10.1038/nrc3257.

Chng WJ, Glebov O, Bergsagel PL, Kuehl WM. Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol. [Internet] 2007 Dec;20(4):571-96. Available from: https://doi.org/10.1016/j.beha.2007.08.004.

Heider M, Nickel K, Högner M, Bassermann F. Multiple Myeloma: Molecular Pathogenesis and Disease Evolution. Oncol Res Treat. [Internet] 2021;44(12):672-681. Available from: https://doi.org/10.1159/000520312.

Chim CS, Liang R, Leung MH, Kwong YL. Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma. J Clin Pathol. [Internet] 2007 Jan;60(1):104-6. Available from: https://doi.org/10.1136/jcp.2006.036715.

Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman JG, Osieka R. DNA methylation changes in multiple myeloma. Leukemia. [Internet] 2004 Oct;18(10):1687-92. Available from: https://doi.org/10.1038/sj.leu.2403434.

Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A, Davies FE, Ross FM, Morgan GJ. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood. [Internet] 2011 Jan 13;117(2):553-62. Available from: https://doi.org/10.1182/blood-2010-04-279539.

Zhou H, Hu H, Lai M. Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell. [Internet] 2010 Dec;102(12):645-55. Available from: https://doi.org/10.1042/BC20100029.

Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. [Internet] 2011 Nov 18;12(12):861-74. Available from: https://doi.org/10.1038/nrg3074.

Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. [Internet] 2008 Sep 26;31(6):785-99. Available from: https://doi.org/10.1016/j.molcel.2008.09.003.

Aravin AA, Bourc'his D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev. [Internet] 2008 Apr 15;22(8):970-5. Available from: https://doi.org/10.1101/gad.1669408.

Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, Gotoh K, Hiura H, Arima T, Fujiyama A, Sado T, Shibata T, Nakano T, Lin H, Ichiyanagi K, Soloway PD, Sasaki H. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science. [Internet] 2011 May 13;332(6031):848-52. Available from: https://doi.org/10.1126/science.1203919.

Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. [Internet] 2008 Apr 1;22(7):908-17. Available from: https://doi.org/10.1101/gad.1640708.

Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. [Internet] 2007 May 4;316(5825):744-7. Available from: https://doi.org/10.1126/science.1142612.

Cheng Y, Wang Q, Jiang W, Bian Y, Zhou Y, Gou A, Zhang W, Fu K, Shi W. Emerging roles of piRNAs in cancer: challenges and prospects. Aging (Albany NY). [Internet] 2019 Nov 13;11(21):9932-9946. Available from: https://doi.org/10.18632/aging.102417.

Yu Y, Xiao J, Hann SS. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res. [Internet] 2019 Jun 28;11:5895-5909. Available from: https://doi.org/10.2147/CMAR.S209300.

Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev. [Internet] 2014 Jun;1(2):205-218. Available from: https://doi.org/10.1093/nsr/nwu014.

Guo B, Li D, Du L, Zhu X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. [Internet] 2020 Jun;39(2):567-575. Available from: https://doi.org/10.1007/s10555-020-09863-0.

Yao J, Xie M, Ma X, Song J, Wang Y, Xue X. PIWI-interacting RNAs in cancer: Biogenesis, function, and clinical significance. Front Oncol. [Internet] 2022 Sep 23;12:965684. Available from: https://doi.org/10.3389/fonc.2022.965684.

Gómez-Luque JM, Urrutia-Maldonado E, Muñoz de Rueda P, Abril-Molina A, Ocete-Hita E. Estudio de casos y controles de los receptores de tipo KIR (killer inmunoglobulin-like receptor) en oncología. An Pediatr (Engl Ed). [Internet] 2022 May 1;96(5):410–5. Available from: https://doi.org/10.1016/j.anpedi.2021.02.001.

Yuan C, Qin H, Ponnusamy M, Chen Y, Lin Z. PIWI‑interacting RNA in cancer: Molecular mechanisms and possible clinical implications (Review). Oncol Rep. [Internet] 2021 Sep;46(3):209. Available from: https://doi.org/10.3892/or.2021.8160.

Pérez-Alvarado J, Moreno-Ortiz JM, Pérez-Alvarado J, Moreno-Ortiz JM. piRNAs, un nuevo campo de biomarcadores en cáncer. Revista biomédica. [Internet] 2017 Jun 14;28(2):99–104. Available from: https://doi.org/10.32776/revbiomed.v28i2.560.

Su JF, Zhao F, Gao ZW, Hou YJ, Li YY, Duan LJ, Lun SM, Yang HJ, Li JK, Dai NT, Shen FF, Zhou FY. piR-823 demonstrates tumor oncogenic activity in esophageal squamous cell carcinoma through DNA methylation induction via DNA methyltransferase 3B. Pathol Res Pract. [Internet] 2020 Apr;216(4):152848. Available from: https://doi.org/10.1016/j.prp.2020.152848.

Zhang H, Ren Y, Xu H, Pang D, Duan C, Liu C. The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol. [Internet] 2013 Dec;22(4):217-23. Available from: https://doi.org/10.1016/j.suronc.2013.07.001.

Yang L, Bi L, Liu Q, Zhao M, Cao B, Li D, Xiu J. Hiwi Promotes the Proliferation of Colorectal Cancer Cells via Upregulating Global DNA Methylation. Dis Markers .[Internet] 2015;2015:383056. Available from: https://doi.org/10.1155/2015/383056.

Wang Z, Liu N, Shi S, Liu S, Lin H. The Role of PIWIL4, an Argonaute Family Protein, in Breast Cancer. J Biol Chem.[Internet] 2016 May 13;291(20):10646-58. Available from: https://doi.org/10.1074/jbc.M116.723239.

Su C, Ren ZJ, Wang F, Liu M, Li X, Tang H. PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53. FEBS Lett. [Internet] 2012 May 7;586(9):1356-62. Available from: https://doi.org/10.1016/j.febslet.2012.03.053.

Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, Chen L, Chu ZB, Tang B, Wang K, Wu XF, Xu J, Hu Y. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. [Internet] 2015 Jan;29(1):196-206. Available from: https://doi.org/10.1038/leu.2014.135.

Ma H, Wang H, Tian F, Zhong Y, Liu Z, Liao A. PIWI-Interacting RNA-004800 Is Regulated by S1P Receptor Signaling Pathway to Keep Myeloma Cell Survival. Front Oncol. [Internet] 2020 Apr 15;10:438. Available from: https://doi.org/10.3389/fonc.2020.00438.

Yang X, Cheng Y, Lu Q, Wei J, Yang H, Gu M. Detection of stably expressed piRNAs in human blood. Int J Clin Exp Med. [Internet] 2015 Aug 15;8(8):13353-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612950/

Ai L, Mu S, Sun C, Fan F, Yan H, Qin Y, Cui G, Wang Y, Guo T, Mei H, Wang H, Hu Y. Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation. Mol Cancer. [Internet] 2019 Apr 13;18(1):88. Available from: https://doi.org/10.1186/s12943-019-1011-5.

Seyeddokht A, Aslaminejad AA, Masoudi-Nejad A, Nassiri M, Zahiri J, Sadeghi B. Computational Detection of piRNA in Human Using Support Vector Machine. Avicenna J Med Biotechnol.[Internet] 2016 Jan-Mar;8(1):36-41. Available from: https://doi.org/10.1186/s12859-017-1896-1

Tong Y, Guan B, Sun Z, Dong X, Chen Y, Li Y, Jiang Y, Li J. Ratiometric fluorescent detection of exosomal piRNA-823 based on Au NCs/UiO-66-NH2 and target-triggered rolling circle amplification. Talanta. [Internet] 2023 May 15;257:124307. Available from: https://doi.org/ 10.1016/j.talanta.2023.124307.

Sistema OJS - Metabiblioteca |