Aplicación de "Machine Learning" y "Deep Learning" en investigación y desarrollo de terapias CAR-T

Machine learning and Deep learning applications in CAR-T research and development.

Contenido principal del artículo

Bonell Patiño Escobar

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Bonell Patiño Escobar, University of California, San Francisco, CA, USA

MD, Especialista en medicina interna y Hematologia. UCSF Helen Diller Family Comprehensive Cancer Center. Department of Laboratory Medicine, University of California, San Francisco, CA, USA

 

 

Referencias

Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer [Internet]. Immunological Reviews. John Wiley and Sons Inc; 2023. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/imr.13245

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of Go without human knowledge. Nature [Internet]. 2017 Oct 18;550(7676):354–9. Available from: https://www.nature.com/articles/nature24270

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language Models are Unsupervised Multitask Learners [Internet]. Available from: https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models are Few-Shot Learners. 2020 May 28 [cited 2023 Nov 7]; Available from: https://arxiv.org/abs/2005.14165v4

He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 2017 Mar 20; Available from: http://arxiv.org/abs/1703.06870

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature [Internet]. 2021 Aug 26;596(7873):583–9. Available from: https://www.nature.com/articles/s41586-021-03819-2#citeas

Choudhry P, Gugliemini O, Geng H, Sarin V, Sarah L, Paranjape N, et al. Functional multi-omics reveals genetic and pharmacologic regulation of surface CD38 in multiple myeloma. Available from: https://doi.org/10.1101/2021.08.04.455165

Hie BL, Shanker VR, Xu D, Bruun TUJ, Weidenbacher PA, Tang S, et al. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol [Internet]. 2023; Available from: https://www.nature.com/articles/s41587-023-01763-2

Naghizadeh A, Tsao WC, Cho JH, Xu H, Mohamed M, Li D, et al. In vitro machine learning-based CAR T immunological synapse quality measurements correlate with patient clinical outcomes. PLoS Comput Biol [Internet]. 2022 Mar 1;18(3). Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009883

Lee M, Lee YH, Song J, Kim G, Jo YJ, Min HS, et al. Deep-learning based three-dimensional 1 label-free tracking and analysis of immunological synapses of car-t cells. Elife [Internet]. 2020 Dec 1;9:1–53. Available from: https://elifesciences.org/articles/49023

Dannenfelser R, Allen GM, VanderSluis B, Koegel AK, Levinson S, Stark SR, et al. Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies. Cell Syst [Internet]. 2020 Sep 23;11(3):215-228.e5. Available from: https://www.sciencedirect.com/science/article/pii/S2405471220302866

Patiño-Escobar B, Talbot A, Wiita AP. Overcoming proteasome inhibitor resistance in the immunotherapy era. Trends Pharmacol Sci [Internet]. 2023 Aug 1;44(8):507–18. Available from: https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(23)00111-6

Ferguson ID, Patiño-Escobar B, Tuomivaara ST, Lin YHT, Nix MA, Leung KK, et al. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun [Internet]. 2022 Dec 1;13(1). Available from: https://www.nature.com/articles/s41467-022-31810-6

Patino-Escobar B, Kasap C, Ferguson I, Hale M, Wiita A. P-103: Profiling the myeloma cell surface proteome reveals CCR10 as a potential immunotherapeutic target. Clin Lymphoma Myeloma Leuk [Internet]. 2021 Oct;21:S94–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2152265021022370

Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med [Internet]. 2015 Jun 9;21(6):581–90. Available from: https://www.nature.com/articles/nm.3838

Boucher JC, Li G, Kotani H, Cabral ML, Morrissey D, Lee SB, et al. CD28 costimulatory domain-targeted mutations enhance chimeric antigen receptor T-cell function. Cancer Immunol Res [Internet]. 2021 Jan 1;9(1):62–74. Available from: https://aacrjournals.org/cancerimmunolres/article/9/1/62/470226/CD28-Costimulatory-Domain-Targeted-Mutations

Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease [Internet]. Vol. 23, Nature Medicine. Nature Publishing Group; 2017. p. 18–27. Available from: https://www.nature.com/articles/nm.4241

Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies [Internet]. Available from: https://www.science.org/doi/10.1126/scitranslmed.aad5222

Daniels KG, Wang S, Simic MS, Bhargava HK, Capponi S, Tonai Y, et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning [Internet]. Available from: https://www.science.org/doi/abs/10.1126/science.abq0225?af=R&utm_source=sfmc&utm_medium=email&utm_campaign=1stRelease&utm_content=alert&et_rid=719334783&et_cid=4522378

Sistema OJS - Metabiblioteca |