piARNs y proteínas tipo PIWI en cáncer y su futuro como biomarcadores y objetivos terapéuticos en cáncer de pulmón: una revisión sistemática
piRNAs and PIWI-like proteins in cancer and their future as biomarkers and therapeutic targets in lung cancer: a systematic review
Cómo citar
Descargar cita

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Mostrar biografía de los autores
Introducción: Esta revisión sistemática evalúa la evidencia actual sobre el papel de los ARN interactuantes con PIWI (piRNAs) en el cáncer de pulmón, con énfasis en su potencial diagnóstico y terapéutico. El adenocarcinoma de pulmón, una importante preocupación global de salud, requiere explorar alternativas a los métodos tradicionales. Los piRNAs, ARN no codificantes pequeños, se expresan de manera anormal en tejidos cancerosos y fluidos biológicos, lo que indica su potencial como biomarcadores y objetivos terapéuticos. Métodos: Se realizó una búsqueda exhaustiva en las bases de datos PubMed y ScienceDirect, siguiendo las directrices PRISMA. La búsqueda se centró en estudios que examinaran la expresión de piRNA, su valor diagnóstico en tejidos LUAD y vesículas extracelulares, y sus implicaciones terapéuticas. Se incluyeron estudios publicados a partir de 2020 y se evaluaron por sesgo y calidad. Resultados: De los diecinueve artículos inicialmente identificados, cinco estudios cumplieron con los criterios de inclusión. Estos estudios identificaron piRNAs específicos con expresión elevada en LUAD, como piR-hsa-26925 y piR-hsa-5444, que mostraron un fuerte rendimiento diagnóstico (AUC = 0.833). Además, los piRNAs derivados de vesículas extracelulares, incluyendo piR-hsa-164586, demostraron potencial para la detección temprana del cáncer de pulmón de células no pequeñas (AUC = 0.624). Conclusiones: Los piRNAs muestran promesa como biomarcadores no invasivos para el diagnóstico temprano y objetivos terapéuticos en el cáncer de pulmón. Se necesita más investigación para validar estos hallazgos y comprender los mecanismos subyacentes para mejorar las aplicaciones clínicas.
Visitas del artículo 219 | Visitas PDF 161
Descargas
- Reyes Barreto JS, Cabezas Varela CS, Girón Jurado LV, Baldión Elorza AM. piRNAs and PIWI-like proteins in cancer and their future as biomarkers and therapy targets in breast cancer. Rev colomb hematol oncol [Internet]. 2024;11(1):80-94. Available from: https://dx.doi.org/10.51643/22562915.701 DOI: https://doi.org/10.51643/22562915.701
- Reyes Barreto JS, Giron Jurado LV, Montoya Estrada MP, Sánchez Moreno IL, Picón Moncada LT, Luna-Orozco K, et al. piRNAs and PIWI-like proteins in Multiple Myeloma and their future as biomarkers and therapy targets. Rev colomb hematol oncol [Internet]. 2024;11(1): 67-79 Available from: https://dx.doi.org/10.51643/22562915.697 DOI: https://doi.org/10.51643/22562915.697
- Yan H, Wu Q-L, Sun C-Y, Ai L-S, Deng J, Zhang L, et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia [Internet]. 2015;29(1):196–206. Available from: http://dx.doi.org/10.1038/leu.2014.135 DOI: https://doi.org/10.1038/leu.2014.135
- Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular vesicle (EVs) associated non-coding RNAs in lung cancer and therapeutics. Int J Mol Sci [Internet]. 2022;23(21):13637. Available from: http://dx.doi.org/10.3390/ijms232113637 DOI: https://doi.org/10.3390/ijms232113637
- Cammarata G, Giovannelli P, Barbato F, Carè A. PIWI-interacting RNAs in lung cancer: A systematic review. Int J Mol Sci. 2020;21(23), 9143. Available from: https://dx.doi.org/10.3390/ijms21239143 DOI: https://doi.org/10.3390/ijms21239143
- Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics [Internet]. 2018;8(19):5213–30. Available from: http://dx.doi.org/10.7150/thno.28001 DOI: https://doi.org/10.7150/thno.28001
- Jian Z, Han Y, Li H. Potential roles of PIWI-interacting RNAs in lung cancer. Front Oncol [Internet]. 2022;12:944403. Available from: http://dx.doi.org/10.3389/fonc.2022.944403 DOI: https://doi.org/10.3389/fonc.2022.944403
- Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, et al. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol [Internet]. 2019;55(4):833–44. Available from: http://dx.doi.org/10.3892/ijo.2019.4864 DOI: https://doi.org/10.3892/ijo.2019.4864
- Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao J, et al. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol Cancer [Internet]. 2024;23(1):33. Available from: http://dx.doi.org/10.1186/s12943-024-01944-w DOI: https://doi.org/10.1186/s12943-024-01944-w
- Shaker FH, Sanad EF, Elghazaly H, Hsia S-M, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. Naunyn Schmiedebergs Arch Pharmacol [Internet]. 2025;398(1):47–68. Available from: http://dx.doi.org/10.1007/s00210-024-03308-z DOI: https://doi.org/10.1007/s00210-024-03308-z
- Hsu Y-L, Hung J-Y, Chiang S-Y, Jian S-F, Wu C-Y, Lin Y-S, et al. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis. Oncotarget [Internet]. 2016;7(19):27584–98. Available from: http://dx.doi.org/10.18632/oncotarget.8488 DOI: https://doi.org/10.18632/oncotarget.8488
- Lu X, Shen J, Huang S, Liu D, Wang H. Tumor cells-derived exosomal PD-L1 promotes the growth and invasion of lung cancer cells in vitro via mediating macrophages M2 polarization. Eur J Histochem [Internet]. 2023;67(3). Available from: http://dx.doi.org/10.4081/ejh.2023.3784 DOI: https://doi.org/10.4081/ejh.2023.3784
- Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev [Internet]. 2022;18(2). Available from: https://dx.doi.org/10.1002/cl2.1230 DOI: https://doi.org/10.1002/cl2.1230
- Moher D, Liberati A, Tetzlaff J, Altman DP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6. Available from: https://dx.doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev [Internet]. 2016;5(1). Available from: https://dx.doi.org/10.1186/s13643-016-0384-4 DOI: https://doi.org/10.1186/s13643-016-0384-4
- Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol [Internet]. 2014;14(1). Available from: http://dx.doi.org/10.1186/1471-2288-14-43 DOI: https://doi.org/10.1186/1471-2288-14-43
- Cuschieri S. The CONSORT statement. Saudi J Anaesth [Internet]. 2019;13(5):27. Available from: http://dx.doi.org/10.4103/sja.sja_559_18 DOI: https://doi.org/10.4103/sja.SJA_559_18
- Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ [Internet]. 2017;j4008. Available from: http://dx.doi.org/10.1136/bmj.j4008 DOI: https://doi.org/10.1136/bmj.j4008
- Li J, Wang N, Zhang F, Jin S, Dong Y, Dong X, et al. PIWI‐interacting RNAs are aberrantly expressed and may serve as novel biomarkers for diagnosis of lung adenocarcinoma. Thorac Cancer [Internet]. 2021 [cited 2024 Jul 7];12(18):2468–77. Available from: https://doi.org/10.1111/1759-7714.14094 DOI: https://doi.org/10.1111/1759-7714.14094
- Lin Y, Holden V, Dhilipkannah P, Deepak J, Todd NW, Jiang F. A non-coding RNA landscape of bronchial epitheliums of lung cancer patients. Biomedicines [Internet]. 2020 [cited 2024 Jul 7];8(4):88. Available from: https://doi.org/10.3390/biomedicines8040088 DOI: https://doi.org/10.3390/biomedicines8040088
- Cammarata G, de Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C, et al. Emerging noncoding RNAs contained in extracellular vesicles: rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol [Internet]. 2022 [cited 2024 Jul 7];14:175883592211312. Available from: https://doi.org/10.1177/17588359221131229 DOI: https://doi.org/10.1177/17588359221131229
- Li Y, Dong Y, Zhao S, Gao J, Hao X, Wang Z, et al. Serum-derived piR-hsa-164586 of extracellular vesicles as a novel biomarker for early diagnosis of non-small cell lung cancer. Front Oncol [Internet]. 2022 [cited 2024 Jul 7];12. Available from: https://doi.org/10.3389/fonc.2022.850363 DOI: https://doi.org/10.3389/fonc.2022.850363
- Xin X-L, Wang G-D, Han R, Jiang Y, Liu C, Liu L-S, et al. Mechanism underlying the effect of Liujunzi decoction on advanced-stage non-small cell lung cancer in patients after first-line chemotherapy. J Tradit Chin Med [Internet]. 2022 [cited 2024 Jul 7];42(1):108–15. Available from: https://doi.org/10.19852/j.cnki.jtcm.2022.01.007
- Taghizadeh M, Jafari-Koshki T, Jafarlou V, Raeisi M, Alizadeh L, Roosta Y, et al. The role of piRNAs in predicting and prognosing in cancer: a focus on piRNA-823 (a systematic review and meta-analysis). BMC Cancer [Internet]. 2024;24(1):484. Available from: http://dx.doi.org/10.1186/s12885-024-12180-2 DOI: https://doi.org/10.1186/s12885-024-12180-2
- Zhang Y, Liu S, Zhao T, Dang C. METTL3‑mediated m6A modification of Bcl‑2 mRNA promotes non‑small cell lung cancer progression. Oncol Rep [Internet]. 2021;46(2). Available from: http://dx.doi.org/10.3892/or.2021.8114 DOI: https://doi.org/10.3892/or.2021.8114
- Ding X, Li Y, Lü J, Zhao Q, Guo Y, Lu Z, et al. PiRNA-823 is involved in cancer stem cell regulation through altering DNA methylation in association with luminal breast cancer. Front Cell Dev Biol [Internet]. 2021;9:641052. Available from: http://dx.doi.org/10.3389/fcell.2021.641052 DOI: https://doi.org/10.3389/fcell.2021.641052
- Sohn EJ, Han M-E, Park YM, Kim YH, Oh S-O. The potential of piR-823 as a diagnostic biomarker in oncology: A systematic review. PLoS One [Internet]. 2023;18(12):e0294685. Available from: http://dx.doi.org/10.1371/journal.pone.0294685 DOI: https://doi.org/10.1371/journal.pone.0294685
- Jiang W, Cai F, Xu H, Lu Y, Chen J, Liu J, et al. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell [Internet]. 2020;11(11):825–45. Available from: http://dx.doi.org/10.1007/s13238-020-00701-1 DOI: https://doi.org/10.1007/s13238-020-00701-1
