piRNAs and PIWI-like proteins in cancer and their future as biomarkers and therapeutic targets in lung cancer: a systematic review
piARNs y proteínas tipo PIWI en cáncer y su futuro como biomarcadores y objetivos terapéuticos en cáncer de pulmón: una revisión sistemática
How to Cite
Download Citation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Show authors biography
Introduction: This systematic review evaluates the current evidence on the role of PIWI-interacting RNAs (piRNAs) in lung cancer, emphasizing their diagnostic and therapeutic potential. Lung adenocarcinoma, a major global health concern, necessitates exploration of alternatives to traditional methods. piRNAs, small non-coding RNAs, are abnormally expressed in cancerous tissues and biological fluids, indicating their potential as biomarkers and therapeutic targets. Methods: A comprehensive search was performed in PubMed and ScienceDirect databases according to PRISMA guidelines. The search focused on studies examining piRNA expression, their diagnostic value in LUAD tissues and extracellular vesicles, and their therapeutic implications. Studies published from 2020 onward were included and evaluated for bias and quality. Results: Out of nineteen initially identified papers, five studies met the inclusion criteria. These studies identified specific piRNAs with elevated expression in LUAD, such as piR-hsa-26925 and piR-hsa-5444, which showed strong diagnostic performance (AUC = 0.833). Additionally, piRNAs from extracellular vesicles, including piR-hsa-164586, demonstrated potential for early detection of Non-Small Cell Lung Cancer (AUC = 0.624). Conclusions: piRNAs show promise as non-invasive biomarkers for early diagnosis and potential therapeutic targets in lung cancer. Further research is needed to validate these findings and understand the underlying mechanisms to improve clinical applications.
Article visits 219 | PDF visits 161
Downloads
- Reyes Barreto JS, Cabezas Varela CS, Girón Jurado LV, Baldión Elorza AM. piRNAs and PIWI-like proteins in cancer and their future as biomarkers and therapy targets in breast cancer. Rev colomb hematol oncol [Internet]. 2024;11(1):80-94. Available from: https://dx.doi.org/10.51643/22562915.701 DOI: https://doi.org/10.51643/22562915.701
- Reyes Barreto JS, Giron Jurado LV, Montoya Estrada MP, Sánchez Moreno IL, Picón Moncada LT, Luna-Orozco K, et al. piRNAs and PIWI-like proteins in Multiple Myeloma and their future as biomarkers and therapy targets. Rev colomb hematol oncol [Internet]. 2024;11(1): 67-79 Available from: https://dx.doi.org/10.51643/22562915.697 DOI: https://doi.org/10.51643/22562915.697
- Yan H, Wu Q-L, Sun C-Y, Ai L-S, Deng J, Zhang L, et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia [Internet]. 2015;29(1):196–206. Available from: http://dx.doi.org/10.1038/leu.2014.135 DOI: https://doi.org/10.1038/leu.2014.135
- Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular vesicle (EVs) associated non-coding RNAs in lung cancer and therapeutics. Int J Mol Sci [Internet]. 2022;23(21):13637. Available from: http://dx.doi.org/10.3390/ijms232113637 DOI: https://doi.org/10.3390/ijms232113637
- Cammarata G, Giovannelli P, Barbato F, Carè A. PIWI-interacting RNAs in lung cancer: A systematic review. Int J Mol Sci. 2020;21(23), 9143. Available from: https://dx.doi.org/10.3390/ijms21239143 DOI: https://doi.org/10.3390/ijms21239143
- Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics [Internet]. 2018;8(19):5213–30. Available from: http://dx.doi.org/10.7150/thno.28001 DOI: https://doi.org/10.7150/thno.28001
- Jian Z, Han Y, Li H. Potential roles of PIWI-interacting RNAs in lung cancer. Front Oncol [Internet]. 2022;12:944403. Available from: http://dx.doi.org/10.3389/fonc.2022.944403 DOI: https://doi.org/10.3389/fonc.2022.944403
- Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, et al. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol [Internet]. 2019;55(4):833–44. Available from: http://dx.doi.org/10.3892/ijo.2019.4864 DOI: https://doi.org/10.3892/ijo.2019.4864
- Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao J, et al. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol Cancer [Internet]. 2024;23(1):33. Available from: http://dx.doi.org/10.1186/s12943-024-01944-w DOI: https://doi.org/10.1186/s12943-024-01944-w
- Shaker FH, Sanad EF, Elghazaly H, Hsia S-M, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. Naunyn Schmiedebergs Arch Pharmacol [Internet]. 2025;398(1):47–68. Available from: http://dx.doi.org/10.1007/s00210-024-03308-z DOI: https://doi.org/10.1007/s00210-024-03308-z
- Hsu Y-L, Hung J-Y, Chiang S-Y, Jian S-F, Wu C-Y, Lin Y-S, et al. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis. Oncotarget [Internet]. 2016;7(19):27584–98. Available from: http://dx.doi.org/10.18632/oncotarget.8488 DOI: https://doi.org/10.18632/oncotarget.8488
- Lu X, Shen J, Huang S, Liu D, Wang H. Tumor cells-derived exosomal PD-L1 promotes the growth and invasion of lung cancer cells in vitro via mediating macrophages M2 polarization. Eur J Histochem [Internet]. 2023;67(3). Available from: http://dx.doi.org/10.4081/ejh.2023.3784 DOI: https://doi.org/10.4081/ejh.2023.3784
- Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev [Internet]. 2022;18(2). Available from: https://dx.doi.org/10.1002/cl2.1230 DOI: https://doi.org/10.1002/cl2.1230
- Moher D, Liberati A, Tetzlaff J, Altman DP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6. Available from: https://dx.doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev [Internet]. 2016;5(1). Available from: https://dx.doi.org/10.1186/s13643-016-0384-4 DOI: https://doi.org/10.1186/s13643-016-0384-4
- Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol [Internet]. 2014;14(1). Available from: http://dx.doi.org/10.1186/1471-2288-14-43 DOI: https://doi.org/10.1186/1471-2288-14-43
- Cuschieri S. The CONSORT statement. Saudi J Anaesth [Internet]. 2019;13(5):27. Available from: http://dx.doi.org/10.4103/sja.sja_559_18 DOI: https://doi.org/10.4103/sja.SJA_559_18
- Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ [Internet]. 2017;j4008. Available from: http://dx.doi.org/10.1136/bmj.j4008 DOI: https://doi.org/10.1136/bmj.j4008
- Li J, Wang N, Zhang F, Jin S, Dong Y, Dong X, et al. PIWI‐interacting RNAs are aberrantly expressed and may serve as novel biomarkers for diagnosis of lung adenocarcinoma. Thorac Cancer [Internet]. 2021 [cited 2024 Jul 7];12(18):2468–77. Available from: https://doi.org/10.1111/1759-7714.14094 DOI: https://doi.org/10.1111/1759-7714.14094
- Lin Y, Holden V, Dhilipkannah P, Deepak J, Todd NW, Jiang F. A non-coding RNA landscape of bronchial epitheliums of lung cancer patients. Biomedicines [Internet]. 2020 [cited 2024 Jul 7];8(4):88. Available from: https://doi.org/10.3390/biomedicines8040088 DOI: https://doi.org/10.3390/biomedicines8040088
- Cammarata G, de Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C, et al. Emerging noncoding RNAs contained in extracellular vesicles: rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol [Internet]. 2022 [cited 2024 Jul 7];14:175883592211312. Available from: https://doi.org/10.1177/17588359221131229 DOI: https://doi.org/10.1177/17588359221131229
- Li Y, Dong Y, Zhao S, Gao J, Hao X, Wang Z, et al. Serum-derived piR-hsa-164586 of extracellular vesicles as a novel biomarker for early diagnosis of non-small cell lung cancer. Front Oncol [Internet]. 2022 [cited 2024 Jul 7];12. Available from: https://doi.org/10.3389/fonc.2022.850363 DOI: https://doi.org/10.3389/fonc.2022.850363
- Xin X-L, Wang G-D, Han R, Jiang Y, Liu C, Liu L-S, et al. Mechanism underlying the effect of Liujunzi decoction on advanced-stage non-small cell lung cancer in patients after first-line chemotherapy. J Tradit Chin Med [Internet]. 2022 [cited 2024 Jul 7];42(1):108–15. Available from: https://doi.org/10.19852/j.cnki.jtcm.2022.01.007
- Taghizadeh M, Jafari-Koshki T, Jafarlou V, Raeisi M, Alizadeh L, Roosta Y, et al. The role of piRNAs in predicting and prognosing in cancer: a focus on piRNA-823 (a systematic review and meta-analysis). BMC Cancer [Internet]. 2024;24(1):484. Available from: http://dx.doi.org/10.1186/s12885-024-12180-2 DOI: https://doi.org/10.1186/s12885-024-12180-2
- Zhang Y, Liu S, Zhao T, Dang C. METTL3‑mediated m6A modification of Bcl‑2 mRNA promotes non‑small cell lung cancer progression. Oncol Rep [Internet]. 2021;46(2). Available from: http://dx.doi.org/10.3892/or.2021.8114 DOI: https://doi.org/10.3892/or.2021.8114
- Ding X, Li Y, Lü J, Zhao Q, Guo Y, Lu Z, et al. PiRNA-823 is involved in cancer stem cell regulation through altering DNA methylation in association with luminal breast cancer. Front Cell Dev Biol [Internet]. 2021;9:641052. Available from: http://dx.doi.org/10.3389/fcell.2021.641052 DOI: https://doi.org/10.3389/fcell.2021.641052
- Sohn EJ, Han M-E, Park YM, Kim YH, Oh S-O. The potential of piR-823 as a diagnostic biomarker in oncology: A systematic review. PLoS One [Internet]. 2023;18(12):e0294685. Available from: http://dx.doi.org/10.1371/journal.pone.0294685 DOI: https://doi.org/10.1371/journal.pone.0294685
- Jiang W, Cai F, Xu H, Lu Y, Chen J, Liu J, et al. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell [Internet]. 2020;11(11):825–45. Available from: http://dx.doi.org/10.1007/s13238-020-00701-1 DOI: https://doi.org/10.1007/s13238-020-00701-1
