Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

piARNs y proteínas similares a PIWI en el cáncer y su futuro como biomarcadores y objetivos terapéuticos en el cáncer de mama

piRNAs and PIWI-like proteins in cancer and their future as biomarkers and therapy targets in breast cancer



Abrir | Descargar


Sección
Revisiones

Cómo citar
piARNs y proteínas similares a PIWI en el cáncer y su futuro como biomarcadores y objetivos terapéuticos en el cáncer de mama.
Rev. colomb. hematol. oncol. [Internet]. 2024 Jun. 30 [cited 2024 Dec. 22];11(1):80-94. Disponible en: https://doi.org/10.51643/22562915.701

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.


Jheremy Sebastian Reyes Barreto,

Médico, Universidad de Los Andes, Colombia.


Cristian Sebastián Cabezas Varela,

Médico, Universidad de Los Andes, Colombia.


Leidy Viviana Girón Jurado,

Médica, Universidad de Santander, Colombia.


Ana Margarita Baldión Elorza,

Médica, Patóloga.


A nivel global, el cáncer de mama (CM) es el tipo de cáncer más común, con 2.261.419 nuevos casos en 2020 y casi 700.000 muertes relacionadas. Debido a la alta carga que esto representa, es imperativo expandir horizontes para poder encontrar nuevos biomarcadores y objetivos terapéuticos que puedan utilizarse para mejorar el pronóstico, el tratamiento y la supervivencia de las pacientes con cáncer de mama. En los últimos años, se han llevado a cabo numerosos estudios buscando la asociación entre los piARNs (ARNs que interactúan con PIWI) y el desarrollo, la patogénesis, la metástasis y la progresión de diferentes tipos de cáncer, incluido el CM. Los piARNs son moléculas pequeñas (24-31 nucleótidos) que interactúan con el complejo proteico PIWI (proteínas similares a PIWI - HIWI/HILI en humanos) realizando funciones regulatorias al inducir cambios epigenéticos transcripcionales, post-transcripcionales, traduccionales y post-traduccionales, lo que se ha observado que contribuye al desarrollo del cáncer mediante modificaciones en la proliferación celular, silenciamiento de transposones, reordenamiento del genoma, regulación epigenética, regulación de proteínas y mantenimiento de células madre. En el cáncer de mama, se ha encontrado una fuerte asociación entre la expresión de algunos piARNs, proteínas similares a PIWI y el desarrollo tumoral. Si un piARN específico pudiera asociarse con un tipo específico de cáncer, entonces podría utilizarse como un biomarcador temprano que permitiría un mejor pronóstico. Los hallazgos en torno a estos mecanismos moleculares también podrían despertar interés en estudios que se centren en la modificación de la expresión de piARNs en células cancerosas. En este artículo, pretendemos revisar de manera sencilla la información actual sobre los piARNs/proteínas similares a PIWI, centrándonos en su expresión en el CM.


Visitas del artículo 199 | Visitas PDF 130


  1. Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 74(3), 229–263. Available from: https://doi.org/10.3322/caac.21834
  2. Siddiqi S, Matushansky I. Piwis and piwi-interacting RNAs in the epigenetics of cancer. J Cell Biochem. [Internet] 2012 Feb;113(2):373-80. Available from: https://doi.org/10.1002/jcb.23363.
  3. Guo B, Li D, Du L, Zhu X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. [Internet] 2020 Jun;39(2):567-575. Available from: https://doi.org/10.1007/s10555-020-09863-0.
  4. Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, et al. The emerging role of the piRNA/piwi complex in cancer. Molecular Cancer. [Internet] 2019;18(1). Available from: https://doi.org/10.1186/s12943-019-1052-9.
  5. Yu Y, Xiao J, Hann SS. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res. [Internet] 2019 Jun 28;11:5895-5909. Available from: https://doi.org/10.2147/CMAR.S209300.
  6. Tóth KF, Pezic D, Stuwe E, Webster A. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. Adv Exp Med Biol. [Internet] 2016;886:51-77. Available from: https://doi.org/10.1007/978-94-017-7417-8_4.
  7. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. [Internet] 2019 Feb;20(2):89-108. Available from: https://doi.org/10.1038/s41576-018-0073-3.
  8. Perera BPU, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics. [Internet] 2019 May;14(5):504-521. Available from: https://doi.org/10.1080/15592294.2019.1600389.
  9. Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H, Li QN. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta. [Internet] 2011 Aug 17;412(17-18):1621-5. Available from: https://doi.org/10.1016/j.cca.2011.05.015.
  10. Moyano M, Stefani G. piRNA involvement in genome stability and human cancer. Journal of Hematology & Oncology. [Internet] 2015;8(1). Available from: https://doi.org/10.1186/s13045-015-0133-5.
  11. Wu X, Pan Y, Fang Y, Zhang J, Xie M, Yang F, et al. The Biogenesis and Functions of piRNAs in Human Diseases. Molecular Therapy - Nucleic Acids. [Internet] 2020;21:108–20. Available from: https://doi.org/10.1016/j.omtn.2020.05.023.
  12. Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet. [Internet] 2018 Nov 23;52:131-157. Available from: https://doi.org/10.1146/annurev-genet-120417-031441.
  13. Czech B, Hannon GJ. One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem Sci. [Internet] 2016 Apr;41(4):324-337. Available from: https://doi.org/10.1016/j.tibs.2015.12.008.
  14. Yang X, Cheng Y, Lu Q, Wei J, Yang H, Gu M. Detection of stably expressed piRNAs in human blood. Int J Clin Exp Med. [Internet] 2015 Aug 15;8(8):13353-8. Available from: https://pubmed.ncbi.nlm.nih.gov/26550265/.
  15. Mai D, Zheng Y, Guo H, Ding P, Bai R, Li M, et al. Serum piRNA-54265 is a New Biomarker for early detection and clinical surveillance of Human Colorectal Cancer. Theranostics. [Internet] 2020;10(19):8468–78. Available from: https://doi.org/10.7150/thno.46241.
  16. Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem. [Internet] 2011 Sep 1;44(13):1050–7. Available from: https://doi.org/10.1016/j.clinbiochem.2011.06.004
  17. Li B, Hong J, Hong M, Wang Y, Yu T, Zang S, et al. piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene. [Internet] 2019;38(26):5227–38. Available from: https://doi.org/10.1038/s41388-019-0788-4
  18. Iliev R, Fedorko M, Machackova T, Mlcochova H, Svoboda M, Pacik D, et al. Expression Levels of PIWI-interacting RNA, piR-823, Are Deregulated in Tumor Tissue, Blood Serum and Urine of Patients with Renal Cell Carcinoma. Anticancer Research. 2016;36(12):6419–24. Available from: https://doi.org/10.21873/anticanres.11239
  19. Cordeiro A, Navarro A, Gaya A, Díaz-Beyá M, Gonzalez-Farré B, Castellano JJ, et al. PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget. [Internet] 2016;7(29):46002–13. Available from: https://doi.org/10.18632/oncotarget.10015
  20. Iliev R, Stanik M, Fedorko M, Poprach A, VychytilovaFaltejskova P, Slaba K, et al. Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients. Onco Targets Ther. [Internet] 2016;9:217–222. Available from: https://doi.org/10.2147/OTT.S91295
  21. Stohr CG, Steffens S, Polifka I, Jung R, Kahlmeyer A, Ivanyi P, et al. Piwi-like 1 protein expression is a prognostic factor for renal cell carcinoma patients. Scientific Reports. [Internet] 2019;9(1):1741. Available from: https://doi.org/10.1038/s41598-018-38254-3
  22. Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. International Journal of Cancer. [Internet] 2005;118(8):1922–9. Available from: https://doi.org/10.1002/ijc.21575
  23. Gao C-li, Sun R, Li D-hai, Gong F. PIWI-like protein 1 upregulation promotes gastric cancer invasion and metastasis. OncoTargets and Therapy. [Internet] 2018; Volume 11:8783–9. Available from: https://doi.org/10.2147/OTT.S186827
  24. Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, et al. piR‐823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Science. [Internet] 2017;108(9):1746–56. Available from: https://doi.org/10.1111/cas.13300
  25. Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. [Internet] 2018;8(19):5213–30. Available from: https://www.thno.org/v08p5213.htm
  26. Vychytilova-Faltejskova P, Stitkovcova K, Radova L, Sachlova M, Kosarova Z, Slaba K, et al. Circulating PIWI-Interacting RNAs piR-5937 and piR-28876 Are Promising Diagnostic Biomarkers of Colon Cancer. Cancer Epidemiology Biomarkers & Prevention. [Internet] 2018;27(9):1019–28. Available from: https://doi.org/10.1158/1055-9965.EPI-18-0318
  27. Weng W, Liu N, Toiyama Y, Kusunoki M, Nagasaka T, Fujiwara T, et al. Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Molecular Cancer. [Internet] 2018;17(1). Available from: https://doi.org/10.1186/s12943-018-0767-3
  28. Yin J, Qi W, Ji CG, Zhang DX, Xie XL, Ding Q, et al. Small RNA sequencing revealed aberrant piRNA expression profiles in colorectal cancer. Oncology Reports. [Internet] 2019;42(1):263-72. Available from: https://doi.org/10.3892/or.2019.7158
  29. Sun R, Gao C-li, Li D-hai, Li B-jun, Ding Y-hong. Expression Status of PIWIL1 as a Prognostic Marker of Colorectal Cancer. Disease Markers. [Internet] 2017;2017:1–7. Available from: https://doi.org/10.1155/2017/1204937
  30. Zhang SJ, Yao J, Shen BZ, Li GB, Kong SS, Bi DD, et al. Role of piwi‑interacting RNA‑651 in the carcinogenesis of non‑small cell lung cancer. Oncology Letters. [Internet] 2018;15(1):940-46. Available from: https://doi.org/10.3892/ol.2017.7406
  31. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomedical Reports. [Internet] 2016;4(5):546–50. Available from: https://doi.org/10.3892/br.2016.628
  32. Peng L, Song L, Liu C, Lv X, Li X, Jie J, et al. piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumor Biology. [Internet] 2015;37(2):2749–56. Available from: https://doi.org/10.1007/s13277-015-4056-0
  33. Xie K, Zhang K, Kong J, Wang C, Gu Y, Liang C, et al. Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in lung adenocarcinoma. Cancer Medicine. [Internet] 2017;7(1):157–66. Available from: https://doi.org/10.1002/cam4.1248
  34. Ai L, Mu S, Sun C, Fan F, Yan H, Qin Y, et al. Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation. Molecular Cancer. [Internet] 2019;18(1). Available from: https://doi.org/10.1186/s12943-019-1011-5
  35. Yan H, Wu Q-L, Sun C-Y, Ai L-S, Deng J, Zhang L, et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. [Internet] 2014;29(1):196–206. Available from: https://doi.org/10.1038/leu.2014.135
  36. Ma H, Wang H, Tian F, Zhong Y, Liu Z, Liao A. PIWI-Interacting RNA-004800 Is Regulated by S1P Receptor Signaling Pathway to Keep Myeloma Cell Survival. Frontiers in Oncology. [Internet] 2020;10. Available from: https://doi.org/10.3389/fonc.2020.00438
  37. Navarro A, Cordeiro A, Gaya A, Gonzalez-Farre B, Díaz-Beyá M, Fuster D, et al. Piwirna-651 Expression Influences Treatment Response and Impacts Survival in Classical Hodgkin Lymphoma Patients through Regulation of ABCC5. Blood. [Internet] 2014;124(21):134. Available from: https://doi.org/10.1182/blood.V124.21.134.134
  38. Cordeiro A, Monzó M, Navarro A. Non-Coding RNAs in Hodgkin Lymphoma. International Journal of Molecular Sciences. [Internet] 2017;18(6):1154. Available from: https://doi.org/10.3390/ijms18061154
  39. Huang G, Hu H, Xue X, Shen S, Gao E, Guo G, et al. Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clinical and Translational Oncology.[Internet] 2012;15(7):563–8. Available at https://doi.org/10.1007/s12094-012-0966-0
  40. Öner Ç, Turgut Coşan D, Çolak E. Estrogen and Androgen Hormone Levels Modulate the Expression of PIWI Interacting RNA in Prostate and Breast Cancer. PLOS ONE. [Internet] 2016;11(7). https://doi.org/10.1371/journal.pone.0159044
  41. Tan L, Mai D, Zhang B, Jiang X, Zhang J, Bai R, et al. PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Molecular Cancer. [Internet] 2019;18(1). Available from: https://doi.org/10.1186/s12943-019-0940-3
  42. Maleki Dana P, Mansournia MA, Mirhashemi SM. PIWI-interacting RNAs: new biomarkers for diagnosis and treatment of breast cancer. Cell & Bioscience. [Internet] 2020;10(1). Available from: https://doi.org/10.1186%2Fs13578-020-00403-5
  43. Litwin M, Szczepanska-Buda A, Michalowska D, Grzegrzolka J, Piotrowska A, Gomulkiewicz A, et al. Aberrant Expression of PIWIL1 and PIWIL2 and Their Clinical Significance in Ductal Breast Carcinoma. Anticancer Res. [Internet] 2018;38(4):2021-2030. Available from: https://doi.org/10.21873/anticanres.12441
  44. Zhang H, Ren Y, Xu H, Pang D, Duan C, Liu C. The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surgical Oncology, Elsevier. [Internet] 2013;22:217-23. Available from: https://doi.org/10.1016/j.suronc.2013.07.001
  45. Qian L, Xie H, Zhang L, Zhao Q, Lü J, Yu Z. Piwi-Interacting RNAs: A New Class of Regulator in Human Breast Cancer [Internet]. Frontiers. Frontiers; 1AD [cited 2021Jul19]. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2021.695077/full.
  46. Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, et al. RNA Sequencing Identifies Specific PIWI-Interacting Small Non-Coding RNA Expression Patterns in Breast Cancer. Oncotarget [Internet] (2014) 5(20):9901–10. Available from: https://doi.org/10.18632/oncotarget.2476
  47. Ding X, Li Y, Lü J, Zhao Q, Guo Y, Lu Z, et al. Pirna-823 Is Involved in Cancer Stem Cell Regulation Through Altering DNA Methylation in Association With Luminal Breast Cancer. Front Cell Dev Biol [Internet] (2021) 9:641052. Available from: https://doi.org/10.3389/fcell.2021.641052
  48. Koduru SV, Tiwari AK, Leberfinger A, Hazard SW, Kawasawa YI, Mahajan M, et al. A Comprehensive Ngs Data Analysis of Differentially Regulated miRNAs, piRNAs, lncRNAs and Sn/snoRNAs in Triple Negative Breast Cancer. J Cancer [Internet] (2017) 8(4):578–96. doi: 10.7150/jca.17633. Available from: https://doi.org/10.7150%2Fjca.17633
  49. Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Chekhun VF, Beland FA, et al. Role of Ferritin Alterations in Human Breast Cancer Cells. Breast Cancer Res Treat [Internet] (2011) 126(1):63–71. Available from: https://doi.org/10.1007/s10549-010-0849-4
  50. Fu A, Jacobs DI, Hoffman AE, Zheng T, Zhu Y. PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis. [Internet] 2015;36(10):1094–102. Available from: https://doi.org/10.1093/carcin/bgv105
Sistema OJS 3.4.0.7 - Metabiblioteca |