Skip to main navigation menu Skip to main content Skip to site footer

Partial exchange transfusion protocol for patients with sickle cell disease: Standardization and efficacy of a useful new protocol

Exanguinotransfusión parcial en pacientes con anemia de células falciformes: estandarización y eficacia de un nuevo protocolo




Section
Original articles

How to Cite
Partial exchange transfusion protocol for patients with sickle cell disease: Standardization and efficacy of a useful new protocol.
Rev. colomb. hematol. oncol. [Internet]. 2022 May 2 [cited 2024 Dec. 22];8(2):125-40. Disponible en: https://doi.org/10.51643/22562915.129

Dimensions
PlumX

Victor Rodriguez Balseca,

Médico


Stephanie Casadiego Payares,

Médico Pediatra Magíster en inmunología


Aura Henao Torres,

Médica Pediatra


Soraya Paternina Palomo,

Oncohematóloga Pediatra


Carolina Isabel Negrete Spath,

Médica


Ángel Castro Dajer,

Oncohematólogo pediatra


Primary and secondary prevention of stroke and other complications in SCD can be done with exchange transfusion. Among the benefits are less iron overload and better hemoglobin S (HbS) control. Due to the technical difficulty it is little used in clinical practice Objective: To evaluate the safety and clinical efficacy of a new protocol for partial exchange transfusion in pediatric patients with SCD. Methods: 33 patients with SCD were included between February 2016 and March 2019 with a lower limit of hemoglobin was 7 gr/dl. The efficacy of the protocol was evaluated with the measurement of hemoglobin, hematocrit, %HbS, ferritin and TAMMvel- MCA, at the beginning of the study and after at least 3 months. Results: We made 355 procedures in 33 patients, age 9 years (IQR 6-16 years). 78.3% homozygous (HbSS). The indication for transfusion was 63.6% primary prevention and 30.3% secondary prevention. Medical complications were 1.1% and success rate 96.3%. In a subgroup of 22 patients, the efficacy of the protocol was assessed. The difference in post and pre ferritin was -33.77 mcg / L (95% CI -647.2 to 579.7 mcg / L); exchange transfusion decreased% HbS -26.16% [95% CI (-37.42 to -14.90) p <0.0001], Hb 0.5955 gr/dl [95% CI (0.2513-0.9396) p 0.0017]; the difference between TAMMvel- MCA was -19.58 cm/s [95% CI (-42.00 to 28.38) p 0.0829]. Conclusion: This protocol is easy, safe and unexpensive; its use could be extended to other centers, including patients with 7 g/dl hemoglobin. It is effective in lowering HbS and is associated with a lower probability of iron overload in patients on chronic transfusion therapy.


Article visits 1579 | PDF visits 1073


  1. Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nat Rev Dis Prim. [Internet] 2018;4:1–22. Disponible en: https://doi.org/10.1038/nrdp.2018.10
  2. Adewoyin AS, Adewoyin AS. Management of Sickle Cell Disease: A Review for Physician Education in Nigeria (Sub-Saharan Africa). Anemia. [Internet] 2015;2015:1–21. Disponible en: https://doi.org/10.1155/2015/791498
  3. Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. [Internet] 2017;376(16):1561–73. Disponible en: https://doi.org/10.1056/NEJMra1510865
  4. Williams TN, Thein SL. Sickle Cell Anemia and Its Phenotypes. Annu Rev Genomics Hum Genet. [Internet] 2018;19(1):annurev-genom-083117-021320. Disponible en: https://doi.org/10.1146/annurev-genom-083117-021320
  5. Camila A, Kelin C, Karen E, Roger R, Richar T. Anemia drepanocítica y situación en colombia : Revisión Sickle cell anemia and situation in Colombia : Review. Revista Salud Uninorte. [Internet] 2017;32(3):513-527. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522016000300014&lng=en&tlng=es.
  6. Huttle A, Maestre GE, Lantigua R. Sickle Cell in Sickle Cell Disease in Latin America and the United States. Pediatric blood & cancer. [Internet] 2017;62(7): 1131–1136. Disponible en: https://doi.org/10.1002/pbc.25450.
  7. Castillo M, Oliveros AL. Caracterización de alteraciones en la molécula de hemoglobina en afrodescendientes colombianos. Nova. [Internet] 12(22):151-156. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702014000200004&lng=en&tlng=es.
  8. Silva JR, Malambo D, Silva DF, Fals E, Fals O, Rey J. Tamizaje de hemoglobinopatías en una muestra de la población infantil de Cartagena. Revista Colombiana de Pediatria. [Internet] 2003;33(2). Disponible en: https://encolombia.com/medicina/revistas-medicas/pediatria/vp-332/33-2_pediatria_tamizaje/.
  9. Alvear CC, Barboza M, Viola M, Moneriz C, Araque LM. Pilot study of hemoglobinopathies in newborns of the Rafael Calvo maternity clinic of Cartagena, Colombia. Colomb medica. [Internet] 2012;43(3):196-9. Disponible en: https://www.redalyc.org/articulo.oa?id=28323958010
  10. Chou ST, Fasano RM. Management of Patients with Sickle Cell Disease Using Transfusion Therapy: Guidelines and Complications. Hematol Oncol Clin North Am. [Internet] 2016;30(3):591–608. Disponible en: https://doi.org/10.1016/j.hoc.2016.01.011
  11. Wahl S, Quirolo KC. Current issues in blood transfusion for sickle cell disease. Curr Opin Pediatr. [Internet] 2009;21(1):15–21. Disponible en: https://doi.org/10.1097/MOP.0b013e328321882e
  12. Davis BA, Allard S, Qureshi A, Porter JB, Pancham S, Win N, et al. Guidelines on red cell transfusion in sickle cell disease. Part I: principles and laboratory aspects. Br J Haematol. [Internet] 2017;176(2):179–91. Disponible en: https://doi.org/10.1111/bjh.14346
  13. Howard J. The role of blood transfusion in Sickle Cell Disease. ISBT Sci Ser © 2013 Int Soc Blood Transfus. [Internet] 2013;8:225–8. Disponible en: https://doi.org/10.1111/voxs.12047
  14. Koehl B, Sommet J, Holvoet L, Abdoul H, Boizeau P, Ithier G, et al. Comparison of automated erythrocytapheresis versus manual exchange transfusion to treat cerebral macrovasculopathy in sickle cell anemia. Transfusion. [Internet] 2016;56(5):1121–8. Disponible en: https://doi.org/10.1111/trf.13548
  15. Wang WC, Dwan K. Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease. [Internet] 2013;(1). Disponible en: https://doi.org/10.1002/14651858.CD003146.pub2
  16. Godfrey GJ, Lockwood W, Kong M, Bertolone S, Raj A. Antibody Development in Pediatric Sickle Cell Patients Undergoing Erythrocytapheresis. [Internet] 2010;(July):1134–7. Disponible en: https://doi.org/10.1002/pbc.22647
  17. Chou ST. Transfusion therapy for sickle cell disease : a balancing act. [Internet] 2013;439–46. Disponible en: https://doi.org/10.1182/asheducation-2013.1.439
  18. Escobar C, Moniz M, Nunes P, Abadesso C, Ferreira T, Barra A, et al. Partial red blood cell exchange in children and young patients with sickle cell disease: Manual versus automated procedure | Transfusão permuta parcial em crianças e jovens com doença falciforme: Comparação da experiência manual com o procedimento automat. Acta Med Port. [Internet] 2017;30(10):727–33. Disponible en: https://doi.org/10.20344/amp.8228
  19. Davis BA, Allard S, Qureshi A, Porter JB, Pancham S, Win N, et al. Guidelines on red cell transfusion in sickle cell disease Part II: indications for transfusion. Br J Haematol. [Internet] 2017;176(2):192–209. Disponible en: https://doi.org/10.1111/bjh.14383.
  20. Kuo KHM. A comparison of chronic manual and automated red blood cell exchange transfusion in sickle cell disease patients. Br J Haematol. [Internet] 2015;170(3):425–8. Disponible en: https://doi.org/10.1111/bjh.13294
  21. Dedeken L, Lê PQ, Rozen L, El Kenz H, Huybrechts S, Devalck C, et al. Automated RBC exchange compared to manual exchange transfusion for children with sickle cell disease is cost-effective and reduces iron overload. Transfusion. [Internet] 2018;00:1–7. Disponible en: https://doi.org/10.1111/trf.14575.
  22. Woods D, Hayashi RJ, Binkley MM, Sparks GW, Hulbert ML. Increased complications of chronic erythrocytapheresis compared with manual exchange transfusions in children and adolescents with sickle cell disease. Pediatr Blood Cancer. [Internet] 2017;64(11). Disponible en: https://doi.org/10.1002/pbc.26635
  23. Savage WJ, Reddoch S, Wolfe J, Casella JF. Partial manual exchange reduces iron accumulation during chronic red cell transfusions for sickle cell disease. J Pediatr Hematol Oncol. [Internet] 2013;35(6):434–6. Disponible en: https://doi.org/10.1097/MPH.0b013e31829d470d.
  24. Kozanoglu I, Ozdogu H. Use of Red Blood Cell Exchange for Treating Acute Complications of Sickle Cell Disease. Transfusion and apheresis science : official journal of the World Apheresis Association: official journal of the European Society for Haemapheresis. [Internet] 2018;57(1):23–26. Disponible en: https://doi.org/10.1016/j.transci.2018.02.011 .
  25. Faye B, Sow D, Seck M, Dieng N, Toure S, Gadji M, et al. Efficacy and Safety of Manual Partial Red Cell Exchange in the Management of Severe Complications of Sickle Cell Disease in a Developing Country. Adv Hematol. [Internet] 2017;2017:3518402. Disponible en: https://doi.org/10.1155/2017/3518402.
  26. Swerdlow PS. Red cell exchange in sickle cell disease. Hematology Am Soc Hematol Educ Program. [Internet] 2006;48–53. Disponible en: https://doi.org/10.1182/asheducation-2006.1.48
  27. Thurston GB, Henderson NM, Jeng M. Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood. Clin Hemorheol Microcirc. [Internet] 2004;30(2):83–97. PMID: 15004333.
  28. Kim HC. Red cell exchange: Special focus on sickle cell disease. Hematology. [Internet] 2014;(1):450–6. Disponible en: https://doi.org/10.1182/asheducation-2014.1.450. Epub 2014 Nov 18. PMID: 25696893.
  29. DeBaun MR, Gordon M, McKinstry RC, Noetzel MJ, White DA, Sarnaik SA, et al. Controlled Trial of Transfusions for Silent Cerebral Infarcts in Sickle Cell Anemia. N Engl J Med. [Internet] 2014;371(8):699–710. Disponible en: https://doi.org/10.1056/NEJMoa1401731. PMID: 25140956; PMCID: PMC4195437.
  30. Kwiatkowski JL, Yim E, Miller S, Adams RJ. Effect of transfusion therapy on transcranial doppler ultrasonography velocities in children with sickle cell disease. Pediatr Blood Cancer. [Internet] 2011;56(5):777-82. Disponible en: https://doi.org/10.1002/pbc.22951. Epub 2010 Dec 23. PMID: 21370410; PMCID: PMC3368333.
  31. Bishop S, Matheus MG, Abboud MR, Cane ID, Adams RJ, Jackson SM, et al. Effect of chronic transfusion therapy on progression of neurovascular pathology in pediatric patients with sickle cell anemia. Blood Cells, Mol Dis. [Internet] 2011;47(2):125–8. Disponible en: https://doi.org/10.1016/j.bcmd.2011.06.002. Epub 2011 Jul 2. PMID: 21724428.
  32. Sheehan VA, Hansbury EN, Smeltzer MP, Fortner G, McCarville MB, Aygun B. Transcranial Doppler Velocity and Brain MRI/MRA Changes in Children With Sickle Cell Anemia on Chronic Transfusions to Prevent Primary Stroke. Pediatr Blood Cancer. [Internet] 2013;60(9):1499-502. Disponible en: https://doi.org/10.1002/pbc.24569. Epub 2013 Apr 26. PMID: 23625812.
  33. Hulbert ML, McKinstry RC, Lacey J, Moran CJ, Panepinto JA, Thompson AA, et al. Silent cerebral infarcts occur despite regular blood transfusion therapy after first strokes in children with sickle cell disease. Blood. [Internet] 2011;117(3):772–9. Disponible en: https://doi.org/10.1182/blood-2010-01-261123. Epub 2010 Oct 12. PMID: 20940417; PMCID: PMC3035071.
  34. Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B, Sarnaik S, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia - TCD with Transfusions Changing to Hydroxyurea (TWiTCH): A multicentre, open-label, phase 3, non-inferiority trial. Lancet. [Internet] 2016;387(10019):661–70. Disponible en: https://doi.org/10.1016/S0140-6736(15)01041-7. Epub 2015 Dec 6. PMID: 26670617; PMCID: PMC5724392.
  35. Stanley H, Friedman D, Webb J, Kwiatkowski J. Transfusional Iron Overload in a Cohort of Children with Sickle Cell Disease: Impact of Magnetic Resonance Imaging, Transfusion Method, and Chelation. Pediatr Blood Cancer. [Internet] 2016;63(8):1414–8. Disponible en: https://doi.org/10.1002/pbc.26017. Epub 2016 Apr 21. PMID: 27100139; PMCID: PMC5132054.
Sistema OJS 3.4.0.7 - Metabiblioteca |