Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Biología molecular del cáncer colorrectal

Molecular biology of colorectal cancer


Resumen gráfico Biología molecular del cáncer colorrectal
Abrir | Descargar

Cómo citar

1.
Garcia-Foncillas J, Jiménez-Vásquez P, Avila-Rodriguez V, Guerrero-Macías S, Manrique ME, Rendón-Hernández J, et al. Biología molecular del cáncer colorrectal. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 17];13(1-Supl):281-309. https://doi.org/10.51643/22562915.853

Descargar cita

Citaciones


Sección
Artículos especiales

Cómo citar
1.
Garcia-Foncillas J, Jiménez-Vásquez P, Avila-Rodriguez V, Guerrero-Macías S, Manrique ME, Rendón-Hernández J, et al. Biología molecular del cáncer colorrectal. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 17];13(1-Supl):281-309. https://doi.org/10.51643/22562915.853

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.


Jesus Garcia-Foncillas ,

Full Professor of Oncology, School of Medicine, Autonomous University of Madrid. Director, Professorship on Innovation in Science and Health, Autonomous University of Madrid-Merck. Director, OncoHealth Institute. Director, Department of Oncology. Director, Translational Oncology Division, Research Institute FJD-UAM. Fundacion Jimenez Diaz University Hospital, Autonomous University of Madrid. Rey Juan Carlos University Hospital. Infanta Elena University Hospital. Villalva University General Hospital.


Paola Jiménez-Vásquez,

Médico Cirujano, Médico Internista, Oncología Médica


Vaneza Avila-Rodriguez ,

Médico internista, Universidad Javeriana. Unidad de Asistencia Funcional de Hospitalización, CTIC. Master en Oncología Molecular, Centro de Estudios Biosanitarios.


Silvia Guerrero-Macías,

Cirujana Oncóloga, Universidad Militar Nueva Granada.  Estudiante Escuela Europea de Oncología Peritoneal.


María Eugenia Manrique,

Cirujana Gastrointestinal y Endoscopia, Pontificia Universidad Javeriana. Coordinadora Servicio de Cirugía Gastrointestinal. Centro de Investigación y Tratamiento del Cáncer Luis Carlos Sarmiento Angulo (CTIC), Bogotá, Colombia.


Juliana Rendón-Hernández,

Cirujana Gastrointestinal y Endoscopia Digestiva UMNG, INC. Médico Especialista Unidad Funcional Cirugía Gastrointestinal y Tumores Neuroendocrinos, Centro de Investigación y Tratamiento del Cáncer Luis Carlos Sarmiento Angulo (CTIC), Bogotá, Colombia. Médico Especialista Unidad Funcional Cirugía Gastrointestinal, Instituto Nacional de Cancerología. PhD (c ) Oncología Universidad Nacional de Colombia. Investigadora Junior para Minciencias. 


Julieth Montano Angarita,

Enfermera, Pontificia Universidad Javeriana. Especialista en Enfermería Oncológica, Pontificia Universidad Javeriana. Especialista en Gerencia Hospitalaria, Pontificia Universidad Javeriana.


Juan Fernando Calvo,

Médico y Cirujano, Universidad Industrial de Santander. Médico Hospitalario, Centro de Investigación y Tratamiento del Cáncer Luis Carlos Sarmiento Angulo (CTIC), Bogotá, Colombia.


Carlos Eduardo Bonilla,

Médico Cirujano, Especialista en Medicina Interna, Especialista en Oncología Clínica, Especialista en Docencia Universitaria. Actualmente Médico Oncólogo Clinico, Jefe UFC Gastrointestinal en Centro de Tratamiento e Investigación sobre Cáncer.


Introducción: el cáncer colorrectal es una de las principales causas de incidencia y mortalidad por cáncer a nivel mundial. Su desarrollo resulta de una compleja interacción entre alteraciones genéticas, epigenéticas y del microambiente tumoral.

Métodos: se realizó una revisión narrativa de la literatura científica relevante sobre la biología molecular del cáncer colorrectal, incluyendo vías de carcinogénesis, síndromes hereditarios, biomarcadores clínicamente relevantes y aplicaciones de la biopsia líquida.

Resultados: la patogénesis del cáncer colorrectal se organiza en tres vías principales de inestabilidad genómica: inestabilidad cromosómica, caracterizada por alteraciones en APC, TP53 y activación de RAS/MAPK; inestabilidad de microsatélites, secundaria a deficiencia del sistema de reparación de errores de emparejamiento, asociada a alta carga mutacional y sensibilidad a inmunoterapia; y el fenotipo metilador de islas CpG, frecuentemente relacionado con mutaciones en BRAF y silenciamiento de MLH1. Aproximadamente el 10% de los casos corresponde a síndromes hereditarios, principalmente síndrome de Lynch y síndromes polipósicos. Biomarcadores moleculares permiten estratificación pronóstica y selección terapéutica, mientras que el ADN tumoral circulante emerge como herramienta para detección de enfermedad mínima residual y monitorización de la evolución clonal.

Conclusión: la integración de la biología molecular en el manejo del cáncer colorrectal constituye un pilar de la oncología de precisión, optimizando el diagnóstico, el pronóstico y la selección de terapias personalizadas.


Visitas del artículo 0 | Visitas PDF 0


Descargas

Los datos de descarga todavía no están disponibles.
  1. Bray F, Ferlay J, Laversanne M, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin [Internet]. 2024;130(3):474–498. Disponible en: https://doi.org/10.3322/caac.21834
  2. Morgan E, Arnold M, Gini A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut [Internet]. 2023;72(2):338–344. Disponible en: https://doi.org/10.1136/gutjnl-2022-327736
  3. Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: implications for diagnosis and therapy. Oncol Lett [Internet]. 2018;16(1):9–18. Disponible en: https://doi.org/10.3892/ol.2018.8679
  4. Li Q, Geng S, Luo H, et al. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther [Internet]. 2024;9(1):266. Disponible en: https://doi.org/10.1038/s41392-024-01953-7
  5. Cisyk AL, Nugent Z, Wightman RH, et al. Characterizing microsatellite instability and chromosome instability in interval colorectal cancers. Neoplasia [Internet]. 2018;20(9):943–950. Disponible en: https://doi.org/10.1016/j.neo.2018.07.007
  6. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature [Internet]. 2012;487(7407):330–337. Disponible en: https://doi.org/10.1038/nature11252
  7. Stoffel EM, Boland CR. Genetics and genetic testing in hereditary colorectal cancer. Gastroenterology [Internet]. 2015;149(5):1191–1203.e2. Disponible en: https://doi.org/10.1053/j.gastro.2015.07.021
  8. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol [Internet]. 2017;14(4):235–246. Disponible en: https://doi.org/10.1038/nrclinonc.2016.171
  9. Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol [Internet]. 2019;5(8):1124–1131. Disponible en: https://doi.org/10.1001/jamaoncol.2019.0528
  10. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell [Internet]. 1990;61(5):759–767. Disponible en: https://doi.org/10.1016/0092-8674(90)90186-I
  11. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med[Internet]. 2009;361(25):2449–2460. Disponible en: https://doi.org/10.1056/NEJMra0804588
  12. Al-Sohaily S, Biankin A, Leong R, et al. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol[Internet]. 2012;27(9):1423–1431. Disponible en: https://doi.org/10.1111/j.1440-1746.2012.07200.x
  13. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell [Internet]. 2012;149(6):1192–1205. Disponible en: https://doi.org/10.1016/j.cell.2012.05.012
  14. Koveitypour Z, Panahi F, Vakilian M, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci [Internet]. 2019;9:97. Disponible en: https://doi.org/10.1186/s13578-019-0361-4
  15. Snover DC. Update on the serrated pathway to colorectal carcinoma. Hum Pathol [Internet]. 2011;42(1):1–10. Disponible en: https://doi.org/10.1016/j.humpath.2010.06.002
  16. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med[Internet]. 2015;21(11):1350–1356. Disponible en: https://doi.org/10.1038/nm.3967
  17. Seshagiri S, Stawiski EW, Durinck S, et al. Recurrent R-spondin fusions in colon cancer. Nature [Internet]. 2012;488(7413):660–664. Disponible en: https://doi.org/10.1038/nature11282
  18. Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer [Internet]. 2023;22(1):138. Disponible en: https://doi.org/10.1186/s12943-023-01827-6
  19. Appleyard JW, Williams CJM, Manca P, et al. Targeting the MAP kinase pathway in colorectal cancer: a journey in personalized medicine. Clin Cancer Res [Internet]. 2025;31(13):2565–2572. Disponible en: https://doi.org/10.1158/1078-0432.CCR-25-0107
  20. Massagué J. TGF-β in cancer. Cell [Internet]. 2008;134(2):215–230. Disponible en: https://doi.org/10.1016/j.cell.2008.07.001
  21. Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet[Internet]. 2002;3:101–128. Disponible en: https://doi.org/10.1146/annurev.genom.3.022502.103043
  22. Puzzo M, De Santo M, Morelli C, et al. Colorectal cancer: current and future therapeutic approaches and related technologies addressing multidrug strategies against multiple-level resistance mechanisms. Int J Mol Sci [Internet]. 2025;26(3):1313. Disponible en: https://doi.org/10.3390/ijms26031313
  23. Chen Y, Zheng X, Wu C. The role of the tumor microenvironment and treatment strategies in colorectal cancer. Front Immunol [Internet]. 2021;12:792691. Disponible en: https://doi.org/10.3389/fimmu.2021.792691
  24. Wu X, Yan H, Qiu M, et al. Comprehensive characterization of tumor microenvironment in colorectal cancer via molecular analysis. eLife [Internet]. 2023;12:e86032. Disponible en: https://doi.org/10.7554/eLife.86032
  25. Terzić J, Grivennikov S, Karin E, et al. Inflammation and colon cancer. Gastroenterology [Internet]. 2010;138(6):2101–2114.e5. Disponible en: https://doi.org/10.1053/j.gastro.2010.01.058
  26. Veenendaal LM, Kranenburg O, Smakman N, et al. Differential Notch and TGF-β signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol [Internet]. 2008;30(1):1–11. Disponible en: https://doi.org/10.1155/2008/839076
  27. Eng C, Yoshino T, Ruíz-García E, et al. Colorectal cancer. Lancet [Internet]. 2024;404(10449):294–310. Disponible en: https://doi.org/10.1016/S0140-6736(24)00360-X
  28. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA [Internet]. 2021;325(7):669–685. Disponible en: https://doi.org/10.1001/jama.2021.0106
  29. Goosenberg E, Kaur A, Babiker HM. A review of hereditary colorectal cancers. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK538195/
  30. Stjepanovic N, Moreira L, Carneiro F, et al. Hereditary gastrointestinal cancers: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2019;30(10):1558–1571. Disponible en: https://doi.org/10.1093/annonc/mdz233
  31. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med [Internet]. 2003;348(10):919–932. Disponible en: https://doi.org/10.1056/NEJMra012242
  32. Abdel-Rahman WM, Peltomäki P. Molecular basis and diagnostics of hereditary colorectal cancers. Ann Med [Internet]. 2004;36(5):379–388. Disponible en: https://doi.org/10.1080/07853890410018222
  33. Curtius K, Gupta S, Boland CR. Lynch syndrome: a mechanistic and clinical management update. Aliment Pharmacol Ther [Internet]. 2022;55(8):960–977. Disponible en: https://doi.org/10.1111/apt.16826
  34. Taieb J, Svrcek M, Cohen R, Basile D, Tougeron D, Phelip JM. Deficient mismatch repair/microsatellite unstable colorectal cancer: diagnosis, prognosis and treatment. Eur J Cancer [Internet]. 2022;175:136–157. Disponible en: https://doi.org/10.1016/j.ejca.2022.07.020
  35. Colas C, Guerrini-Rousseau L, Suerink M, et al. ERN GENTURIS guidelines on constitutional mismatch repair deficiency: diagnosis, genetic counselling, surveillance, quality of life, and clinical management. Eur J Hum Genet[Internet]. 2024;32(12):1526–1541. Disponible en: https://doi.org/10.1038/s41431-024-01708-6
  36. Mur P, García-Mulero S, Del Valle J, et al. Role of POLE and POLD1 in familial cancer. Genet Med [Internet]. 2020;22(12):2089–2100. Disponible en: https://doi.org/10.1038/s41436-020-0922-2
  37. Palles C, Martin L, Domingo E, et al. The clinical features of polymerase proofreading-associated polyposis and recommendations for patient management. Fam Cancer [Internet]. 2022;21(2):197–209. Disponible en: https://doi.org/10.1007/s10689-021-00256-y
  38. Ditonno I, Novielli D, Celiberto F, et al. Molecular pathways of carcinogenesis in familial adenomatous polyposis. Int J Mol Sci [Internet]. 2023;24(6):5687. Disponible en: https://doi.org/10.3390/ijms24065687
  39. Joo JE, Viana-Errasti J, Buchanan DD, et al. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer [Internet]. 2025;24(2):38. Disponible en: https://doi.org/10.1007/s10689-025-00460-0
  40. Zare B, Monahan KJ. Guidelines for familial adenomatous polyposis: challenges in defining clinical management for a rare disease. Fam Cancer [Internet]. 2025;24(2):35. Disponible en: https://doi.org/10.1007/s10689-025-00462-y
  41. Zaffaroni G, Mannucci A, Koskenvuo L, et al. Updated European guidelines for clinical management of familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPS) and other rare adenomatous polyposis syndromes: a joint EHTG-ESCP revision. Br J Surg [Internet]. 2024;111(5):znae070. Disponible en: https://doi.org/10.1093/bjs/znae263
  42. Luo P, Shi W, Cheng X, et al. Which drugs are more effective in preventing familial adenomatous polyposis progression based on network meta-analysis? Curr Pharm Des [Internet]. 2024;30(20):1548–1563. Disponible en: https://doi.org/10.2174/0113816128289465240422074745
  43. Farooq U, El Alayli A, Duvvuri A, et al. Nonsteroidal anti-inflammatory drugs for chemoprevention in patients with familial adenomatous polyposis: a systematic review and meta-analysis. Gastro Hep Adv [Internet]. 2023;2(7):1005–1013. Disponible en: https://doi.org/10.1016/j.gastha.2023.05.009
  44. Dunlop MG, Farrington SM. MUTYH-associated polyposis and colorectal cancer. Surg Oncol Clin N Am [Internet]. 2009;18(4):599–610. Disponible en: https://doi.org/10.1016/j.soc.2009.08.003
  45. Nielsen M, Infante E, Brand R. MUTYH Polyposis. En: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, et al., editores. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. Actualizado 2021 May 27. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK107219
  46. Yehia L, Plitt G, Tushar AM, et al. Extended spectrum of cancers in PTEN hamartoma tumor syndrome. NPJ Precis Oncol [Internet]. 2025;9(1):61. Disponible en: https://doi.org/10.1038/s41698-025-00847-3
  47. Yehia L, Eng C. PTEN Hamartoma Tumor Syndrome. En: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editores. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1488/
  48. Vasen HFA, Tomlinson I, Castells A. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol [Internet]. 2015;12(2):88–97. Disponible en: https://doi.org/10.1038/nrgastro.2014.229
  49. Jaeger E, Leedham S, Lewis A, et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet [Internet]. 2012;44(6):699–703. Disponible en: https://doi.org/10.1038/ng.2263
  50. Gala MK, Mizukami Y, Le LP, Moriichi K, et al. Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology [Internet]. 2014;146(2):520–529. Disponible en: https://doi.org/10.1053/j.gastro.2013.10.045
  51. Stanich PP, Pearlman R. Hereditary or not? Understanding serrated polyposis syndrome. Curr Treat Options Gastroenterol [Internet]. 2019;17(4):692–701. Disponible en: https://doi.org/10.1007/s11938-019-00256-z
  52. Bonilla CE, Montenegro P, O’Connor JM, et al. Ibero-American consensus review and incorporation of new biomarkers for clinical practice in colorectal cancer. Cancers (Basel) [Internet]. 2023;15(17):4373. Disponible en: https://doi.org/10.3390/cancers15174373
  53. Abdel Hamid M, Pammer LM, Oberparleiter S, et al. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis Oncol [Internet]. 2025;9(1):116. Disponible en: https://doi.org/10.1038/s41698-025-00892-y
  54. Lansom J, Liew I, Ng KS, et al. Right vs. left colorectal cancer: where do we draw the line? Hum Pathol [Internet]. 2024;151:105634. Disponible en: https://doi.org/10.1016/j.humpath.2024.105634
  55. Gutierrez C, et al. The prevalence and prognosis of microsatellite instability-high/mismatch repair-deficient colorectal adenocarcinomas in the United States. JCO Precis Oncol [Internet]. 2023;7:e2200179. Disponible en: https://doi.org/10.1200/po.22.00179
  56. Evrard C, Tachon G, Randrian et al. Microsatellite instability: diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer. Cancers (Basel) [Internet]. 2019;11(10):1567. Disponible en: https://doi.org/10.3390/cancers11101567
  57. Cervantes A, Candia Montero L, Pentheroudakis G, et al. Metastatic colorectal cancer: ESMO living guidelines, version 1.2, September 2024. Ann Oncol [Internet]. 2023;34(1):10–32. Disponible en: https://www.esmo.org/guidelines/living-guidelines/esmo-living-guideline-metastatic-colorectal-cancer
  58. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Colon Cancer. Version 4.2025. June 27, 2025 [Internet]. Plymouth Meeting (PA): NCCN; 2025 [citado 10 sep 2025]. Disponible en: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
  59. Levin-Sparenberg E, Bylsma LC, Lowe K, et al. A systematic literature review and meta-analysis describing the prevalence of KRAS, NRAS, and BRAF gene mutations in metastatic colorectal cancer. Gastroenterology Res [Internet]. 2020;13(5):184–198. Disponible en: https://doi.org/10.14740/gr1167
  60. Mao C, Wu XY, Yang ZY, et al. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases. Sci Rep [Internet]. 2015;5:8065. Disponible en: https://doi.org/10.1038/srep08065
  61. Akkus E, Öksüz NE, Erul E. KRAS G12C inhibitors as monotherapy or in combination for metastatic colorectal cancer: a proportion and comparative meta-analysis of efficacy and toxicity from phase I-II-III trials. Crit Rev Oncol Hematol [Internet]. 2025;211:104741. Disponible en: https://doi.org/10.1016/j.critrevonc.2025.104741
  62. Trunk A, Braithwaite M, Nevala-Plagemann C, et al. Real-world outcomes of patients with BRAF-mutated metastatic colorectal cancer treated in the United States. J Natl Compr Canc Netw [Internet]. 2022;20(2):144–150. Disponible en: https://doi.org/10.6004/jnccn.2021.7059
  63. Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer [Internet]. 2015;51(5):587–594. Disponible en: https://doi.org/10.1016/j.ejca.2015.01.054
  64. Elez E, Yoshino T, Shen L, et al. Encorafenib, cetuximab, and mFOLFOX6 in BRAF-mutated colorectal cancer. N Engl J Med [Internet]. 2025;392(24):2425–2437. Disponible en: https://doi.org/10.1056/NEJMoa2501912
  65. Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med [Internet]. 2019;381(17):1632–1643. Disponible en: https://doi.org/10.1056/NEJMoa1908075
  66. Tabernero J, Grothey A, Van Cutsem E, et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol [Internet]. 2021;39(4):273–284. Disponible en: https://doi.org/10.3410/f.739464054.793584664
  67. Singh H, Kang A, Bloudek L, et al. Systematic literature review and meta-analysis of HER2 amplification, overexpression, and positivity in colorectal cancer. JNCI Cancer Spectr [Internet]. 2024;8(1):pkad082. Disponible en: https://doi.org/10.1093/jncics/pkad082
  68. Venturini J, Massaro G, Lavacchi D, et al. The emerging HER2 landscape in colorectal cancer: the key to unveil the future treatment algorithm? Crit Rev Oncol Hematol [Internet]. 2024;204:104515. Disponible en: https://doi.org/10.1016/j.critrevonc.2024.104515
  69. Germani MM, Borelli B, Hashimoto T, et al. Impact of Human Epidermal Growth Factor Receptor 2 in patients with metastatic colorectal cancer treated with chemotherapy plus bevacizumab or anti-EGFRs: exploratory analysis of eight randomized trials. J Clin Oncol [Internet]. 2025 Sep 4. Disponible en: https://doi.org/10.1200/JCO-25-01003
  70. Strickler JH, Cercek A, Siena S, et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): a multicentre, open-label, phase 2 study. Lancet Oncol [Internet]. 2023;24(5):496–508. Disponible en: https://doi.org/10.1016/S1470-2045(23)00150-X
  71. Yoshino T, Di Bartolomeo M, Raghav K, et al. Final results of DESTINY-CRC01 investigating trastuzumab deruxtecan in patients with HER2-expressing metastatic colorectal cancer. Nat Commun [Internet]. 2023;14(1):3332. Disponible en: https://doi.org/10.1038/s41467-023-38032-4
  72. Raghav K, Siena S, Takashima A, et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol [Internet]. 2024;25(9):1147–1162. Disponible en: https://doi.org/10.1016/S1470-2045(24)00380-2
  73. Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS wild-type, HER2-positive metastatic colorectal cancer (HERACLES). Lancet Oncol [Internet]. 2016;17(6):738–746. Disponible en: https://doi.org/10.1016/S1470-2045(16)00150-9
  74. Sartore-Bianchi A, Lonardi S, Martino C, et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: the phase II HERACLES-B trial. ESMO Open [Internet]. 2020;5(5):e000911. Disponible en: https://doi.org/10.1136/esmoopen-2020-000911
  75. Ambrosini M, Rousseau B, Manca P, et al. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer. Ann Oncol [Internet]. 2024;35(7):643–655. Disponible en: https://doi.org/10.1016/j.annonc.2024.03.009
  76. Bourdais R, Rousseau B, Pujals A, et al. Polymerase proofreading domain mutations: new opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency. Crit Rev Oncol Hematol [Internet]. 2017;113:242–248. Disponible en: https://doi.org/10.1016/j.critrevonc.2017.03.027
  77. Castellucci E, He T, Goldstein DY, et al. DNA polymerase ε deficiency leading to an ultramutator phenotype: a novel clinically relevant entity. Oncologist [Internet]. 2017;22(5):497–502. Disponible en: https://doi.org/10.1634/theoncologist.2017-0034
  78. Marques A, Cavaco P, Torre C, et al. Tumor mutational burden in colorectal cancer: implications for treatment. Crit Rev Oncol Hematol [Internet]. 2024;197:104342. Disponible en: https://doi.org/10.1016/j.critrevonc.2024.104342
  79. Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab (KEYNOTE-158). Lancet Oncol [Internet]. 2020;21(10):1353–1365. Disponible en: https://doi.org/10.1016/S1470-2045(20)30445-9
  80. Sullo FG, Garinet S, Blons H, et al. Molecular features and clinical actionability of gene fusions in colorectal cancer. Crit Rev Oncol Hematol [Internet]. 2025;208:104656. Disponible en: https://doi.org/10.1016/j.critrevonc.2025.104656
  81. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol[Internet]. 2018;15(12):731–747. Disponible en: https://doi.org/10.1038/s41571-018-0113-0
  82. Wang H, Tang R, Jiang L, et al. The role of PIK3CA gene mutations in colorectal cancer and treatment selection. Front Pharmacol [Internet]. 2024;15:1494802. Disponible en: https://doi.org/10.3389/fphar.2024.1494802
  83. Martling A, Lindberg J, Myrberg IH, et al. Low-dose aspirin to reduce recurrence in colorectal cancer patients with PI3K pathway alterations: ALASCCA trial. J Clin Oncol [Internet]. 2025;43(4 Suppl):LBA125. Disponible en: https://doi.org/10.1200/JCO.2025.43.4_suppl.LBA125
  84. Lyu X, Cai R, Han B, et al. FGFR1-amplified colorectal cancer: a distinct prognostic subtype. ESMO Open [Internet]. 2025;10(9):105561. Disponible en: https://doi.org/10.1016/j.esmoop.2025.105561
  85. Lyu X, Cai R, Han B, et al. Comprehensive landscape of FGFR variations in colorectal cancer from ctDNA and tissue analysis. J Clin Oncol [Internet]. 2025;43(4 Suppl):278. Disponible en: https://doi.org/10.1200/JCO.2025.43.4_suppl.278
  86. Wheless MC, Zemla TJ, Hubbard JM, et al. Phase II study of pemigatinib in metastatic colorectal cancer with FGFR alterations. Oncologist [Internet]. 2025;30(6):oyaf069. Disponible en: https://doi.org/10.1093/oncolo/oyaf069
  87. Dienstmann R, Vermeulen L, Guinney J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer [Internet]. 2017;17(2):79–92. Disponible en: https://doi.org/10.1038/nrc.2016.126
  88. Isella C, Brundu F, Bellomo SE, et al. Cancer-cell intrinsic transcriptional traits define clinically relevant colorectal cancer subtypes. Nat Commun [Internet]. 2017;8:15107. Disponible en: https://doi.org/10.1038/ncomms15107
  89. Malla SB, Byrne RM, Lafarge MW, et al. Pathway-level subtyping identifies a slow-cycling phenotype in colorectal cancer. Nat Genet [Internet]. 2024;56(3):458–472. Disponible en: https://doi.org/10.1038/s41588-024-01654-5
  90. Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore in colon cancer: a prognostic and accuracy study. Lancet [Internet]. 2018;391(10135):2128–2139. Disponible en: https://doi.org/10.1016/S0140-6736(18)30789-X
  91. Salazar R, Roepman P, Capella G, et al. Gene expression signature to improve prognosis prediction in stage II–III colorectal cancer. J Clin Oncol [Internet]. 2011;29(1):17–24. Disponible en: https://doi.org/10.1200/JCO.2010.30.1077
  92. You YN, Rustin RB, Sullivan JD. Oncotype DX colon cancer assay for recurrence risk prediction. Surg Oncol[Internet]. 2015;24(2):61–66. Disponible en: https://doi.org/10.1016/j.suronc.2015.02.001
  93. Niedzwiecki D, Frankel WL, Venook AP, et al. Gene expression signature and recurrence-free interval in stage II colon cancer. J Clin Oncol [Internet]. 2016;34(25):3047–3053. Disponible en: https://doi.org/10.1200/JCO.2015.65.4699
  94. Mauri G, Vitiello PP, Sogari A, et al. Liquid biopsies to monitor and direct treatment in colorectal cancer. Br J Cancer[Internet]. 2022;127(3):394–407. Disponible en: https://doi.org/10.1038/s41416-022-01769-8
  95. Malla M, Loree JM, Kasi PM, et al. Using circulating tumor DNA in colorectal cancer. J Clin Oncol [Internet]. 2022;40(24):2846–2857. Disponible en: https://doi.org/10.1200/JCO.21.02615
  96. Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA analysis by ultradeep sequencing in patients with stages I to IIi colorectal cancer. JAMA Oncol [Internet]. 2019;5(8):1124–1131. Disponible en: https://doi.org/10.1001/jamaoncol.2019.0528
  97. Tarazona N, Gimeno-Valiente F, Gambardella V, et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cance. Ann Oncol [Internet]. 2019;30(11):1804–1812. Disponible en: https://doi.org/10.1093/annonc/mdz390
  98. Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med [Internet]. 2016;8(346):346ra92. Disponible en: https://doi.org/10.1007/s11725-017-0702-6
  99. Kotani D, Oki E, Nakamura Y, et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat Med [Internet]. 2023;29(1):127–134. Disponible en: https://doi.org/10.1038/s41591-022-02115-4
  100. Tie J, Cohen JD, Wang Y, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol [Internet]. 2019;5(12):1710–1717. Disponible en: https://doi.org/10.1001/jamaoncol.2019.3616
  101. Tie J, Wang Y, Lo SN, et al. ctDNA-guided adjuvant therapy in stage II colon cancer: DYNAMIC trial. Nat Med[Internet]. 2025;31(9):1509–1518. Disponible en: https://doi.org/10.1038/s41591-025-03579-6
  102. Patelli G, Lazzari L, Crisafulli G, et al. Clinical utility and future perspectives of liquid biopsy in colorectal cancer. Commun Med [Internet]. 2025;5(1):137. Disponible en: https://doi.org/10.1038/s43856-025-00852-4
  103. Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring Mol Cancer [Internet]. 2024;23(1):145. Disponible en: https://doi.org/10.1186/s12943-024-02063-2
  104. Parseghian CM, Loree JM, Morris VK, et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR rechallenge. Ann Oncol [Internet]. 2019;30(2):243–249. Disponible en: https://doi.org/10.1093/annonc/mdy509
  105. Siravegna G, Mussolin B, Buscarino M, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med [Internet]. 2015;21(7):795–801. Disponible en: https://doi.org/10.1038/nm.3870
  106. Montagut C, Dalmases A, Bellosillo B, et al. EGFR extracellular domain mutation conferring cetuximab resistance. Nat Med [Internet]. 2012;18(2):221–223. Disponible en: https://doi.org/10.1038/nm.2609
  107. Corcoran RB, André T, Atreya CE, et al. Combined BRAF, EGFR and MEK inhibition in patients with BRAF V600E-mutant colorectal cancer. Cancer Discov [Internet]. 2018;8(4):428–443. Disponible en: https://doi.org/10.1158/2159-8290.CD-17-1226
  108. Martinelli E, Martini G, Famiglietti V, Troiani T, et al. Cetuximab rechallenge plus avelumab in RAS wild-type metastatic colorectal cancer: the phase 2 single-arm clinical CAVE trial. JAMA Oncol [Internet]. 2021;7(10): 1529–1535. Disponible en: https://doi.org/10.1001/jamaoncol.2021.2915
  109. Cremolini C, Rossini D, Dell’Aquila E, et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol [Internet]. 2019;5(5):343–350. Disponible en: https://doi.org/10.1001/jamaoncol.2018.5080
  110. Parseghian CM, Napolitano S, Loree JM, et al. Mechanisms of resistance to anti-EGFR therapy and rechallenge strategies. Clin Cancer Res [Internet]. 2019;25(23):6899–6908. Disponible en: https://doi.org/10.1158/1078-0432.CCR-19-0823
  111. Pietrantonio F, Vernieri C, Siravegna G, et al. Heterogeneity of acquired resistance to anti-EGFR monoclonal antibodies. Clin Cancer Res [Internet]. 2017;23(10):2414–2422. Disponible en: https://doi.org/10.1158/1078-0432.CCR-16-1863
  112. A Phase II Randomized Therapeutic Optimization Trial for Subjects With Refractory Metastatic Colorectal Cancer Using ctDNA: Rapid 1 Trial. ClinicalTrials.gov [Internet]. 2021. Disponible en: https://clinicaltrials.gov/study/NCT04786600
  113. Circulating Cell-Free Tumor DNA Testing in Guiding Treatment for Patients With Advanced or Metastatic Colorectal Cancer. ClinicalTrials.gov [Internet]. 2019. Disponible en: https://clinicaltrials.gov/study/NCT03844620
  114. Thierry AR, Mouliere F, El Messaoudi S, et al. Clinical validation of the detection of KRAS and BRAF mutation circulating tumor DNA. Nat Med [Internet]. 2014;20(4):430–435. Disponible en: https://doi.org/10.1038/nm.3511
  115. Martínez-Castedo B, Camblor DG, Martín-Arana J, et al. Minimal residual disease in colorectal cancer: tumor-informed versus tumor-agnostic approaches: unraveling the optimal strategy. Ann Oncol [Internet]. 2025;36(5):345–357. Disponible en: https://doi.org/10.1016/j.annonc.2024.12.006
  116. Normanno N, Esposito Abate R, Lambiase M, et al. RAS testing of liquid biopsy correlates with the outcome of metastatic colorectal cancer patients treated with first-line FOLFIRI plus cetuximab in the CAPRI-GOIM trial. Ann Oncol [Internet]. 2018;29(1):112–118. Disponible en: https://doi.org/10.1093/annonc/mdx417
  117. Parikh AR, Van Seventer EE, Siravegna G, et al. Minimal residual disease detection using plasma-only ctDNA assay in colorectal cancer. Clin Cancer Res [Internet]. 2021;27(20):5586–5594. Disponible en: https://doi.org/10.1158/1078-0432.CCR-21-0410
Sistema OJS 3.4.0.7 - Metabiblioteca |