Biología molecular tumoral como modelo estructural para un nuevo TNM
Tumor molecular biology as a structural model for a new TNM
Abrir | Descargar
Cómo citar
1.
Arrieta O, Rosell R, Cardona Zorrilla AF. Biología molecular tumoral como modelo estructural para un nuevo TNM. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 17];13(1-Supl):27-3. https://doi.org/10.51643/22562915.834
Descargar cita
Sección
Editorial
Cómo citar
1.
Arrieta O, Rosell R, Cardona Zorrilla AF. Biología molecular tumoral como modelo estructural para un nuevo TNM. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 17];13(1-Supl):27-3. https://doi.org/10.51643/22562915.834
Dimensions
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Mostrar biografía de los autores
Visitas del artículo 0 | Visitas PDF 0
Descargas
Los datos de descarga todavía no están disponibles.
- Brierley J, National Cancer Institute of Canada Committee on Cancer Staging. The evolving TNM cancer staging system: an essential component of cancer care. CMAJ. [Internet]. 2006;174(2):155-6. Disponible en: https://doi.org/10.1503/cmaj.045113
- Greene FL, Sobin LH. The staging of cancer: a retrospective and prospective appraisal. CA Cancer J Clin. [Internet]. 2008;58(3):180-90. Disponible en: https://doi.org/10.3322/ca.2008.0001
- Sobin LH. TNM: principles, history, and relation to other prognostic factors. Cancer. [Internet]. 2001;91(8 Suppl):1589-92. Disponible en: https://doi.org/10.1002/1097-0142(20010415)91:8+<1589::aid-cncr1170>3.0.co;2-k
- Weitzel JN, Blazer KR, MacDonald DJ, Culver JO, Offit K. Genetics, genomics, and cancer risk assessment: State of the Art and Future Directions in the Era of Personalized Medicine. CA: a cancer journal for clinicians. [Internet]. 2011;61(5):327-359. Disponible en: https://doi.org/10.3322/caac.20128
- Song Q, Merajver SD, Li JZ. Cancer classification in the genomic era: five contemporary problems. Hum Genomics. [Internet]. 2015;9:27. Disponible en: https://doi.org/10.1186/s40246-015-0049-8
- Levy MA, Lovly CM, Pao W. Translating genomic information into clinical medicine: lung cancer as a paradigm. Genome research [Internet]. 2012; 22(11):2101-2108. Disponible en: https://doi.org/10.1101/gr.131128.111
- Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. [Internet]. 2000;406(6797):747 752. Disponible en: https://doi.org/10.1038/35021093
- Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. [Internet]. 2003;100(14):8418-8423. Disponible en: https://doi.org/10.1073/pnas.0932692100
- Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Human Gen. [Internet]. 2012;91(2):303-312. Disponible en: https://doi.org/10.1016/j.ajhg.2012.06.018
- Ali HR, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio SA, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol [Internet]. 2014;15(8):431. Disponible en: https://doi.org/10.1186/s13059-014-0431-1
- Heim D, Budczies J, Stenzinger A, Treue D, Hufnagl P, Denkert C, et al. Cancer beyond organ and tissue specificity: next-generation-sequencing gene mutation data reveal complex genetic similarities across major cancers. Int J Cancer. [Internet]. 2014;135(10):2362-9. Disponible en: https://doi.org/10.1002/ijc.28882
- Hoadley KA, Yau C, Wolf DM, Benz CC, Perou CM, Stuart JM. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. [Internet]. 2014;158(4):929-944. Disponible en: https://doi.org/10.1016/j.cell.2014.06.049
- Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. [Internet]. 2017;18(7):411-424. Disponible en: https://doi.org/10.1038/nrg.2017.26
- Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. [Internet]. 2004;5(1):45-54. Disponible en: https://doi.org/10.1038/nrm1276
- Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. [Internet]. 2012;30(5):413-21. Disponible en: https://doi.org/10.1038/nbt.2203
- Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. [Internet]. 2013;45(10):1134-40. Disponible en: https://doi.org/10.1038/ng.2760
- Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J, et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet. [Internet]. 2018;50(8):1189-1195. Disponible en: https://doi.org/10.1038/s41588-018-0165-1
- Steele CD, Abbasi A, Islam SMA, Bowes AL, Khandekar A, Haase K, et al. Signatures of copy number alterations in human cancer. Nature. [Internet]. 2022;606(7916):984-991. Disponible en: https://doi.org/10.1038/s41586-022-04738-6
- Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. [Internet]. 2011;144(1):27-40. Disponible en: https://doi.org/10.1016/j.cell.2010.11.055
- Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SC, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet. [Internet]. 2011;20(10):1916-24. Disponible en: https://doi.org/10.1093/hmg/ddr073
- Cortés-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL, Yang L, et al.; PCAWG Structural Variation Working Group; Park PJ; PCAWG Consortium. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. [Internet]. 2020;52(3):331-341. Disponible en: https://doi.org/10.1038/s41588-019-0576-7
- Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE, et al. The landscape of chromothripsis across adult cancer types. Nat Commun. [Internet]. 2020;11(1):2320. Disponible en: https://doi.org/10.1038/s41467-020-16134-7
- Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al.; Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. [Internet]. 2018;173(2):321-337.e10. Disponible en: https://doi.org/10.1016/j.cell.2018.03.035
- Kinnersley B, Sud A, Everall A, Cornish AJ, Chubb D, Culliford R, et al. Analysis of 10,478 cancer genomes identifies candidate driver genes and opportunities for precision oncology. Nat Genet. [Internet]. 2024;56(9):1868-1877. Disponible en: https://doi.org/10.1038/s41588-024-01785-9
- Huang J, Chan SC, Ngai CH, Lok V, Zhang L, Lucero-Prisno DE, et al. Global incidence, mortality and temporal trends of cancer in children: A joinpoint regression analysis. Cancer Med. [Internet]. 2023;12(2):1903-1911. Disponible en: https://doi.org/10.1002/cam4.5009
- Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, Zhou X, Li Y, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. [Internet]. 2018;555:371-376. Disponible en: https://doi.org/10.1038/nature25795
- Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. [Internet]. 2013;500:415-421. Disponible en: https://doi.org/10.1038/nature12477
- Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. [Internet]. 2018;555:321-327. Disponible en: https://doi.org/10.1038/nature25480
- Versteeg R. Cancer: Tumours outside the mutation box. Nature. [Internet]. 2014;506:438-439. Disponible en: https://doi.org/10.1038/nature13061
- Huang S, Soto AM, Sonnenschein C. The end of the genetic paradigm of cancer. PLoS Biol. [Internet]. 2025;23(3):e3003052. Disponible en: https://doi.org/10.1371/journal.pbio.3003052
- Demicheli R, Hrushesky WJM. Reimagining Cancer: Moving from the Cellular to the Tissue Level. Cancer Res. [Internet]. 2023;83(2):173-180. Disponible en: https://doi.org/10.1158/0008-5472.can-22-1601
- Pierce GB. On the boundary between development and neoplasia. An interview with Professor G. Barry Pierce. Interview by Juan Arechaga. Int J Dev Biol. [Internet]. 1993;37(1):5-16. Disponible en: https://doi.org/10.1387/ijdb.8507570
- Fathi AT, Stein EM, DiNardo CD, Levis MJ, Montesinos P, de Botton S. Differentiation syndrome with lower-intensity treatments for acute myeloid leukemia. Am J Hematol. [Internet]. 2021;96(6):735-746. Disponible en: https://doi.org/10.1002/ajh.26142
- Nowell PC. The clonal evolution of tumor cell populations. Science. [Internet]. 1976;194(4260):23-8. Disponible en: https://doi.org/10.1126/science.959840
