Secuenciación de próxima generación. ¿Es la última frontera?
Next-generation sequencing. Is it the final frontier?
Cómo citar
Descargar cita

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Mostrar biografía de los autores
La secuenciación de próxima generación (NGS) ha revolucionado la oncología, desde su rol inicial en la secuenciación del genoma humano hasta convertirse en una herramienta esencial para el diagnóstico, la clasificación, el pronóstico y el tratamiento del cáncer. Su historia se remonta a las técnicas de Maxam-Gilbert y Sanger, evolucionando hacia metodologías de alto rendimiento como la secuenciación masiva paralela. Estos avances permitieron la creación de proyectos clave, como el Genoma Humano, TCGA y el Consorcio Internacional del Genoma del Cáncer, que sentaron las bases para una comprensión molecular profunda del cáncer. Hoy en día, el NGS permite identificar alteraciones germinales hereditarias, translocaciones tumorales específicas y mutaciones accionables con implicaciones terapéuticas, y constituye una herramienta fundamental en la oncología de precisión. Además, ha potenciado el uso de biopsias líquidas para evaluar la respuesta al tratamiento, detectar enfermedad mínima residual y anticipar progresiones tumorales. Más allá de la práctica clínica, el NGS ha dado paso a la secuenciación unicelular, lo que ha permitido la caracterización del microambiente tumoral y de la interacción célula a célula, revelando fenómenos biológicos previamente inalcanzables. Finalmente, las tecnologías de secuenciación de tercera generación, como las desarrolladas por PacBio y Oxford Nanopore, ofrecen lecturas largas y detección directa de modificaciones epigenéticas, aunque aún presentan limitaciones técnicas. Estas prometen ampliar aún más el conocimiento genómico del cáncer. Así, el NGS representa no solo una herramienta diagnóstica, sino también una plataforma en expansión para el futuro de la oncología, que continúa desafiando los límites del conocimiento.
Visitas del artículo 0 | Visitas PDF 0
Descargas
- Ghoreyshi N, Heidari R, Farhadi A, Chamanara M, Farahani N, Vahidi M, et al. Next-generation sequencing in cancer diagnosis and treatment: clinical applications and future directions. Discov Oncol. [Internet] 2025;16(1):578. https://doi.org/10.1007/s12672-025-01816-9
- Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. [Internet] 2016;534:47–54. Disponible en: https://doi.org/10.1038/nature17676
- Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, Ramu A, et al. Optimizing cancer genome sequencing and analysis. Cell Syst. [Internet] 2015;1(3):210–23. Disponible en: http://dx.doi.org/10.1016/j.cels.2015.08.015
- Gilbert W, Maxam A. The nucleotide sequence of the lac operator. Proc Natl Acad Sci USA. [Internet] 1973;70(12):3581–4. Disponible en: https://doi.org/10.1073/pnas.70.12.3581
- Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. [Internet] 1977;74(12):5463–7. https://doi.org/10.1073/pnas.74.12.5463
- Ansorge W, Sproat BS, Stegemann J, Schwager C. A non-radioactive automated method for DNA sequence determination. J Biochem Biophys Methods. [Internet] 1986;13(6):315–23. Disponible en: https://doi.org/10.1016/0165-022x(86)90038-2
- Ansorge W, Sproat B, Stegemann J, Schwager C, Zenke M. Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res. [Internet] 1987;15(11):4593–602. Disponible en: https://doi.org/10.1093/nar/15.11.4593
- Hunkapiller T, Kaiser RJ, Koop BF, Hood L. Large-scale and automated DNA sequence determination. Science. [Internet] 1991;254(5028):59–67. Disponible en: https://doi.org/10.1126/science.1925562
- Al-Shuhaib MBS, Hashim HO. Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. J Genet Eng Biotechnol. [Internet] 2023;21(1):115. Disponible en: https://doi.org/10.1186/s43141-023-00587-6
- Hood L, Galas D. The digital code of DNA. Nature. [Internet] 2003;421(6921):444–8. https://doi.org/10.1038/nature01410
- Sinsheimer RL. The Santa Cruz Workshop--May 1985. Genomics. [Internet] 1989;5(4):954–6. Disponible en: https://doi.org/10.1016/0888-7543(89)90142-0
- Dulbecco R. A turning point in cancer research: sequencing the human genome. Science. [Internet] 1986;231(4742):1055–6. Disponible en: https://doi.org/10.1126/science.3945817
- Sulston J, Ferry G. The common thread: a story of science, politics, ethics, and the human genome. London: New York : Bantam; 2002. 310 p.
- Lunshof JE, Bobe J, Aach J, Angrist M, Thakuria JV, Vorhaus DB, et al. Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin Neurosci. [Internet] 2010;12(1):47–60. Disponible en: https://doi.org/10.31887/dcns.2010.12.1/jlunshof
- Roach JC, Boysen C, Wang K, Hood L. Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics. [Internet] 1995;26(2):345–53. https://doi.org/10.1016/0888-7543(95)80219-c
- International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. [Internet] 2001;409(6822):860–921. Disponible en: https://doi.org/10.1038/35057062
- Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. [Internet] 2001;291(5507):1304–51. Disponible en: https://doi.org/10.1016/s0002-9394(01)01077-7
- 18. Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle Georget Tex. [Internet] 2004;3(10):1221–4. Disponible en: https://doi.org/10.4161/cc.3.10.1164
- Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. [Internet] 1987;327(6120):293–7. Disponible en: https://doi.org/10.1038/327293a0
- Bardelli A, Parsons DW, Silliman N, Ptak J, Szabo S, Saha S, et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science. [Internet] 2003;300(5621):949. Disponible en: https://doi.org/10.1126/science.1082596
- Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. [Internet] 2004;350(21):2129–39. Disponible en: https://doi.org/10.1056/nejmoa040938
- Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. [Internet] 2004;304(5676):1497–500. Disponible en: https://doi.org/10.1126/science.1099314
- Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. [Internet] 2004;101(36):13306–11. Disponible en: https://doi.org/10.1073/pnas.0405220101
- Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. [Internet] 1996;242(1):84–9. Disponible en: https://doi.org/10.1006/abio.1996.0432
- Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol. [Internet] 2013;9:640. Disponible en: https://doi.org/10.1038/msb.2012.61
- Kircher M, Kelso J. High-throughput DNA sequencing--concepts and limitations. BioEssays News Rev Mol Cell Dev Biol. [Internet] 2010;32(6):524–36. Disponible en: https://doi.org/10.1002/bies.200900181
- Stein LD. The case for cloud computing in genome informatics. Genome Biol. [Internet] 2010;11(5):207. Disponible en: https://doi.org/10.1186/gb-2010-11-5-207
- Turcatti G, Romieu A, Fedurco M, Tairi AP. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. [Internet] 2008;36(4):e25. Disponible en: https://doi.org/10.1093/nar/gkn021
- Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol Poznan Pol. [Internet] 2015;19(1A):A68-77. Disponible en: https://doi.org/10.5114/wo.2014.47136
- International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature. [Internet] 2010;464(7291):993–8. Disponible en: https://doi.org/10.1038/nature08987
- Fiala EM, Jayakumaran G, Mauguen A, Kennedy JA, Bouvier N, Kemel Y, et al. Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors. Nat Cancer. [Internet] 2021;2:357–65. Disponible en: https://doi.org/10.1038/s43018-021-00172-1
- Ceyhan-Birsoy O, Fiala E, Rana S, Sheehan M, Kennedy J, Yelskaya Z, et al. Universal germline genetic testing in patients with hematologic malignancies using DNA isolated from nail clippings. Haematologica. [Internet] 2024;109(10):3383–90. Disponible en: https://doi.org/10.3324/haematol.2024.285055
- Gray SW, Solomon I, Hampel H, Garcia M, Shaktah L, Dreike S, et al. Universal germline testing for cancer susceptibility and actionable noncancer disorders among 19,842 patients: Initial findings from the City of Hope INSPIRE study. J Clin Oncol. [Internet] 2024;42(16_suppl):10594–10594. Disponible en: https://doi.org/10.1200/jco.2024.42.16_suppl.10594
- Stadler ZK, Maio A, Chakravarty D, Kemel Y, Sheehan M, Salo-Mullen E, et al. Therapeutic Implications of Germline Testing in Patients With Advanced Cancers. J Clin Oncol Off J Am Soc Clin Oncol. [Internet] 2021;39(24):2698–709. Disponible en: https://doi.org/10.1200/JCO.20.03661
- Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Primer. [Internet] 2018;4(1):5. Disponible en: https://doi.org/10.1038/s41572-018-0003-x
- Chakravarty D, Solit DB. Clinical cancer genomic profiling. Nat Rev Genet. [Internet] 2021;22(8):483–501. Disponible en: https://doi.org/10.1038/s41576-021-00338-8
- Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther. [Internet] 2024;9(1):336. Disponible en: https://doi.org/10.1038/s41392-024-02021-w
- Valenzuela G, Burotto M, Marcelain K, González-Montero J. Liquid biopsy to detect resistance mutations against anti-epidermal growth factor receptor therapy in metastatic colorectal cancer. World J Gastrointest Oncol. [Internet] 2022;14(9):1654–64. Disponible en: https://doi.org/10.4251/wjgo.v14.i9.1654
- Bidard FC, Mayer EL, Park YH, Janni W, Ma C, Cristofanilli M, et al. First-Line Camizestrant for Emerging ESR1-Mutated Advanced Breast Cancer. N Engl J Med. [Internet] 2025;393(6):569-80. Disponible en: https://doi.org/10.1056/nejmoa2502929
- Bidard FC, Hardy-Bessard AC, Dalenc F, Bachelot T, Pierga JY, de la Motte Rouge T, et al. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. [Internet] 2022;23(11):1367–77. Disponible en: https://doi.org/10.1158/1538-7445.sabcs21-p1-18-16
- Nakamura Y, Watanabe J, Akazawa N, Hirata K, Kataoka K, Yokota M, et al. ctDNA-based molecular residual disease and survival in resectable colorectal cancer. Nat Med. [Internet] 2024;30(11):3272–83. Disponible en: https://doi.org/10.1038/s41591-024-03254-6
- Kasi PM, Aushev VN, Ensor J, Langer N, Wang CG, Cannon TL, et al. Circulating tumor DNA (ctDNA) for informing adjuvant chemotherapy (ACT) in stage II/III colorectal cancer (CRC): Interim analysis of BESPOKE CRC study. J Clin Oncol. [Internet] 2024;42(3_suppl):9–9. Disponible en: https://doi.org/10.1200/jco.2024.42.3_suppl.9
- Loi S, Johnston SRD, Arteaga CL, Graff SL, Chandarlapaty S, Goetz MP, et al. Prognostic utility of ctDNA detection in the monarchE trial of adjuvant abemaciclib plus endocrine therapy (ET) in HR+, HER2-, node-positive, high-risk early breast cancer (EBC). J Clin Oncol. [Internet] 2024;42(17_suppl):LBA507–LBA507. Disponible en: https://doi.org/10.1200/jco.2024.42.17_suppl.lba507
- Marinello A, Tagliamento M, Pagliaro A, Conci N, Cella E, Vasseur D, et al. Circulating tumor DNA to guide diagnosis and treatment of localized and locally advanced non-small cell lung cancer. Cancer Treat Rev. [Internet] 2024;129:102791. Disponible en: https://doi.org/10.1016/j.ctrv.2024.102791
- Seclì L, Leoni G, Ruzza V, Siani L, Cotugno G, Scarselli E, et al. Personalized Cancer Vaccines Go Viral: Viral Vectors in the Era of Personalized Immunotherapy of Cancer. Int J Mol Sci. [Internet] 2023;24(23):16591. Disponible en: https://doi.org/10.3390/ijms242316591
- Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. [Internet] 2021;13(1):36. Disponible en: https://doi.org/10.1038/s41368-021-00146-0
- Huang AY, Lee EA. Identification of Somatic Mutations From Bulk and Single-Cell Sequencing Data. Front Aging. [Internet] 2022;2:800380. Disponible en: https://doi.org/10.3389/fragi.2021.800380
- Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. [Internet] 2017;17(9):557–69. Disponible en: https://doi.org/10.1038/nrc.2017.58
- Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet. [Internet] 2022;54(7):963–75. Disponible en: https://doi.org/10.1038/s41588-022-01100-4
- Hwang WL, Jagadeesh KA, Guo JA, Hoffman HI, Yadollahpour P, Reeves JW, et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet. [Internet] 2022;54(8):1178–91. Disponible en: https://doi.org/10.1038/s41588-022-01134-8
- Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. [Internet] 2019;25(8):1251–9. Disponible en: https://doi.org/10.21417/ky2019nm
- Luoma AM, Suo S, Wang Y, Gunasti L, Porter CBM, Nabilsi N, et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. [Internet] Cell. 2022;185(16):2918-2935.e29. Disponible en: https://doi.org/10.1016/j.cell.2022.06.018
- Cui X, Liu S, Song H, Xu J, Sun Y. Single-cell and spatial transcriptomic analyses revealing tumor microenvironment remodeling after neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Mol Cancer. [Internet] 2025;24(1):111. Disponible en: https://doi.org/10.1186/s12943-025-02287-w
- van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The Third Revolution in Sequencing Technology. Trends Genet TIG. [Internet] 2018;34(9):666–81. Disponible en: https://doi.org/10.1016/j.tig.2018.05.008
- Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. [Internet] 2009;323(5910):133–8. Disponible en: https://doi.org/10.1126/science.1162986
- Midha MK, Wu M, Chiu KP. Long-read sequencing in deciphering human genetics to a greater depth. Hum Genet. [Internet] 2019;138(11–12):1201–15. Disponible en: https://doi.org/10.1007/s00439-019-02064-y
- Schatz MC. Nanopore sequencing meets epigenetics. Nat Methods. [Internet] 2017;14(4):347–8. Disponible en: https://doi.org/10.1038/nmeth.4240
- Chen Z, He X. Application of third-generation sequencing in cancer research. Med Rev 2021. [Internet] 2021;1(2):150–71. Disponible en: https://doi.org/10.1515/mr-2021-0013
- Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. Science. [Internet] 2022;376(6588):44–53. Disponible en: https://doi.org/10.1126/science.abj6987
