ALKimia : transmutaciones del cáncer de pulmón.

ALKchemy : transmutations of lung cancer.

Contenido principal del artículo

Andrés Felipe Cardona
Noemí Reguart
Pilar Archila
Carlos Vargas
Hernán Carranza
Jorge Miguel Otero
Ludovic Reveiz
Henry Becerra
Andrés Acevedo
Diana Torres
Silvia Serrano
July Katherine Rodríguez
Leonardo Rojas
Orlando Ricaurte
Mauricio Cuello
Óscar Arrieta

Resumen

Los rearreglos del gen con actividad quinasa del linfoma anaplásico (ALK) ocurren infrecuentemente en el cáncer de pulmón de célula no pequeña (CPCNP) y constituyen un paradigma para la terapia dirigida contra oncogenes conductores en esta enfermedad. El crizotinib, un inhibidor del ALK disponible por vía oral, ofrece ventajas significativas para los pacientes positivos con toxicidad leve y beneficio clínico, motivos por los que fue aprobado para uso clínico en un subgrupo del cáncer de pulmón definido molecularmente. En la actualidad, se están desarrollando múltiples inhibidores del ALK dirigidos a maximizar la respuesta en presencia de menos efectos adversos, al igual que a controlar los mecanismos de resistencia subyacentes. Esta información permitirá optimizar en el futuro el tratamiento de los pacientes con cáncer de pulmón ALK positivo.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Andrés Felipe Cardona, Fundación Santa Fe de Bogotá

Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

Noemí Reguart, ospital Clínico y Provincial de Barcelona

Departamento de Oncología Médica, Sección Oncología Torácica, Hospital Clínico y Provincial de Barcelona (Barcelona, España).

Pilar Archila, Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC)

Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

Carlos Vargas, Fundación Santa Fe de Bogotá

Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

Hernán Carranza, Fundación Santa Fe de Bogotá

Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

Jorge Miguel Otero, Fundación Santa Fe de Bogotá

Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

Ludovic Reveiz, Red Iberoamericana de la Colaboración Cochrane

Red Iberoamericana de la Colaboración Cochrane.

Henry Becerra, Fundación Santa Fe de Bogotá

Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).

Andrés Acevedo, Fundación Santa Fe de Bogotá

Grupo Hematología y Trasplante de Médula Ósea, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).

Diana Torres, Fundación Santa Fe de Bogotá

Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup. Instituto de Genética Humana, Pontificia Universidad Javeriana (Bogotá, Colombia).

Silvia Serrano, Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC)

Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

July Katherine Rodríguez, Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC)

Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.

Leonardo Rojas, Instituto Nacional de Cancerología de México (INCAN)

Departamento de Oncología Médica, Instituto Nacional de Cancerología de México (INCAN) (México D.F., México).

Orlando Ricaurte, Universidad Nacional de Colombia

Departamento de Patología, Universidad Nacional de Colombia (Bogotá, Colombia).

Mauricio Cuello, Hospital de Clínicas Universidad de la República (UdelaR)

Departamento Básico de Medicina, Hospital de Clínicas Universidad de la República (UdelaR) (Montevideo, Uruguay).

Óscar Arrieta, Instituto Nacional de Cancerología de México (INCAN)

Departamento de Oncología Médica, Instituto Nacional de Cancerología de México (INCAN) (México D.F., México). Clínica de Oncología Torácica y Laboratorio de Oncología Experimental, Instituto Nacional de Cancerología de México (INCAN) (México D.F., México).

Referencias (VER)

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893-917.

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108.

Bosetti C, Malvezzi M, Chatenoud L, Negri E, Levi F, La Vecchia C. Trends in cancer mortality in the Americas, 1970-2000. Ann Oncol. 2005;16(3):489-511.

Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281-4.

Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene. 2004;9(6):1567-74.

Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439-49.

Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X, et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene. 1997;14(18):2175-88.

Grande E, Bolós MV, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther. 2011;10(4):569-79.

Barreca A, Lasorsa E, Riera L, Machiorlatti R, Piva R, Ponzoni M, et al. Anaplastic lymphoma kinase in human cancer. J Molec Endocrinol. 2011;47(1):R11-23.

Garber K. ALK, lung cancer, and personalized therapy: portent of the future? J Natl Cancer Inst. 2010;102(10):672-5.

Röttgers S, Gombert M, Teigler-Schlegel A, Busch K, Gamerdinger U, Slany R, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia. 2010;24(6):1197-200.

Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol. 2011;4:16.

Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 2011;108(18):7535-40.

Sasaki T, Rodig SJ, Chirieac LR, Jänne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773-80.

Gandara D. Role of prognostic & predictive biomarkers in development of new cancer therapies. Presented July 4, 2011, Amsterdam.

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269856.htm

http://www.nccn.org/professionals/physician_gls/f_guidelines.asp

Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem. 2002;277(39):35990-8.

Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 2004;204(2):127-43.

Muramatsu T. Midkine and pleiotrophin: two related proteins involved indevelopment, survival, inflammation and tumorigenesis. J Biochem. 2002;132(3):359-71.

Meng K, Rodríguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M, et al. Pleiotrophin signals increased tyrosine phosphorylation of beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/ zeta. Proc Natl Acad Sci USA. 2000;97(6):2603-8.

Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M. 6B4 proteoglycan/phosphacan, an extracellular variant of receptorlike protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem. 1996;271(35):21446-52.

Nakanishi T, Kadomatsu K, Okamoto T, Ichihara-Tanaka K, Kojima T, Saito H, et al. Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with midkine. J Biochem. 1997;121(2):197-205.

Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H. Isolation of a neuronal cell surface receptor of heparin binding growthassociated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem. 1994;269(17):12999-3004.

Muramatsu H, Zou K, Sakaguchi N, Ikematsu S, Sakuma S, Muramatsu T. LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun. 2000;270(3):936-41.

Muramatsu H, Zou P, Suzuki H, Oda Y, Chen GY, Sakaguchi N, et al. α4β1- and α6β1-integrins are functional receptors for mi dkine, a heparin-binding growth factor. J Cell Sci. 2004;117(Pt 22):5405-15.

Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997;89(4):1394-404.

Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA, et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology. 2008;33(3):685-700.

Houtman SH, Rutteman M, De Zeeuw CI, French PJ. Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience. 2007;144(4):1373-82.

Pollmann M, Parwaresch R, Adam-Klages S, Kruse ML, Buck F, Heidebrecht HJ. Human EML4, a novel member of the EMAP family, is essential for microtubule formation. Exp Cell Res. 2006;312(17):3241-51.

Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15(9):3143-9.

Gascoyne RD, Lamant L, Martin-Subero JI, Lestou VS, Harris NL, Müller-Hermelink HK, et al. ALK-positive diffuse large Bcell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood. 2003;102(7):2568-73.

Solomon B, Varella-García M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4(12):1450-4.

Kim H, Yoo SB, Choe JY, Paik JH, Xu X, Nitta H, et al. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J Thorac Oncol. 2011;6(8):1359-66.

Yi ES, Chung JH, Kulig K, Kerr KM. Detection of anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer and related issues in ALK inhibitor therapy: a literature review. Mol Diagn Ther. 2012;16(3):143-50.

Tan LH, Do E, Chong SM, Koay ES. Detection of ALK gene rearrangements in formalin-fixed, paraffin-embedded tissue using a fluorescence in situ hybridization (FISH) probe: a search for optimum conditions of tissue archiving and preparation for FISH. Mol Diagn. 2003;7(1):27-33.

Takeuchi K, Choi YL, Soda M, Inamura K, Togashi Y, Hatano S, et al. Multiplex reverse transcription-PCR screening for EML4- ALK fusion transcripts. Clin Cancer Res. 2008;14(20):6618-24.

Kudo K, Nishio M, Sakai K, Tanimoto A, Sakatani T, Saito R, et al. Detection of EML4-ALK in serum RNA from lung cancer patients using MassARRAY platform. J Clin Oncol. 2012;30 (suppl; abstr 10569).

Kanaji N, Bandoh S, Ishii T, Tadokoro A, Watanabe N, Takahama T, et al. Detection of EML4-ALK fusion genes in a few cancer cells from transbronchial cytological specimens utilizing immediate cytology during bronchoscopy. Lung Cancer. 2012. [Epub ahead of print].

Papadopoulou E, Murray S, Nasioulas G. Development of a novel RT-PCR assay for the detection of EML4-ALK fusion products in FFPE speciments. J Clin Oncol. 2012;30 (suppl; abstr e21087).

Martelli MP, Sozzi G, Hernandez L, Pettirossi V, Navarro A, Conte D, et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174(2):661-70.

Rodig SJ, Mino-Kenudson M, Dacic S, Yeap BY, Shaw A, Barletta JA, et al. Unique clinicopathologic features characterize ALKrearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009;15(16):5216-23.

Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561-71.

Mitsudomi T, Tomizawa K, Horio Y, Hida T, Yatabe Y. Comparison of high sensitive IHC, FISH, and RT-PCR direct sequencing for detection of ALK translocation in lung cancer. J Clin Oncol. 2011;29 (suppl; abstr 7534).

Just PA, Cazes A, Audebourg A, Cessot A, Pallier K, Danel C, et al. Histologic subtypes, immunohistochemistry, FISH or molecular screening for the accurate diagnosis of ALK-rearrangement in lung cancer: a comprehensive study of Caucasian nonsmokers. Lung Cancer. 2012;76(3):309-15.

McLeer-Florin A, Moro-Sibilot D, Melis A, Salameire D, Lefebvre C, Ceccaldi F, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. J Thorac Oncol. 2012;7(2):348-54.

Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363(18):1734-9.

Kim H, Yoo SB, Choe JY, Paik JH, Xu X, et al. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J Thorac Oncol. 2011;6(8):1359-66.

Yoshida A, Tsuta K, Nitta H, Hatanaka Y, Asamura H, Sekine I, et al. Bright-field dual-color chromogenic in situ hybridization for diagnosing echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase-positive lung adenocarcinomas. J Thorac Oncol. 2011;6(10):1677-86.

Yoshida A, Tsuta K, Watanabe S, Sekine I, Fukayama M, Tsuda H, et al. Frequent ALK rearrangement and TTF-1/p63 co-expression in lung adenocarcinoma with signet-ring cell component. Lung Cancer. 2011;72(3):309-15.

Camidge DR, Kono SA, Flacco A, Tan AC, Doebele RC, Zhou Q, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 2010;16(22):5581-90.

Sasaki T, Rodig SJ, Chirieac LR, Jänne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773-80.

Atherly AJ, Camidge DR. The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br J Cancer. 2012;106(6):1100-6.

Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561-6.

Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115(8):1723-33.

Horn L, Pao W. EML4-ALK: honing in on a new target in nonsmall-cell lung cancer. J Clin Oncol. 2009;27(26):4232-5.

Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247-53.

Perner S, Wagner PL, Demichelis F, Mehra R, Lafargue CJ, Moss BJ, et al. EML4-ALK fusion lung cancer: a rare acquired event. Neoplasia. 2008;10(3):298-302.

Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008;3(1):13-7.

Varella-García M. Clinical characteristic associated with ALK positive NSCLC. IASLC 2011 (ABS #O05.01).

Bunn P. Oncogene status predicts patterns of metastatic spread in treatment-NSCLC. ESMO 2011.

Zhou W, Christiani DC. East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer. 2011;30(5):287-92.

Gadgeel SM, Cote ML, Bepler G, Murphy V, Malysa A, Wozniak AJ, et al. Frequency of anaplastic lymphoma kinase (ALK) positive tumors among African American non-small cell lung cancer (NSCLC) patients. J Clin Oncol. 2012;30 (suppl; abstr 7593).

Fukui T, Yatabe Y, Kobayashi Y, Tomizawa K, Ito S, Hatooka S, et al. Clinicoradiologic characteristics of patients with lung adenocarcinoma harboring EML4-ALK fusion oncogene. Lung Cancer. 2012. [Epub ahead of print].

Yang J, Zhang X, Su J, Chen H, Tian H, Huang Y, et al. Concomitant EGFR mutation and EML4-ALK gene fusion in non-small cell lung cancer. J Clin Oncol. 2011;29 (suppl; abstr 10517).

Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71(18):6051-60.

Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18(5):1472-82.

Rosell R, Molina-Vila MA, Taron M, Bertran-Alamillo J, Mayo C, Vergnenegre A, et al. EGFR compound mutants and survival on erlotinib in non-small cell lung cancer (NSCLC) patients (p) in the EURTAC study. J Clin Oncol. 2012;30 (suppl; abstr 7522).

Li T, Huang E, Desai S, Beckett L, Stephens C, Zeger G, et al. Update on the large-scale screening of ALK fusion oncogene transcripts in archival NSCLC tumor specimens using multiplexed RT-PCR assays. J Clin Oncol. 2012;30 (suppl; abstr 7594).

Gandara DR, Huang E, Desai S, Mack PC, Beckett L, Stephens C, et al. Thymidylate synthase (TS) gene expression in patients with ALK positive (+) non-small cell lung cancer (NSCLC): implications for therapy. J Clin Oncol. 2012;30 (suppl; abstr 7582).

Camidge DR, Kono SA, Lu X, Okuyama S, Barón AE, Oton AB, et al. Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J Thorac Oncol. 2011;6(4):774-80.

Scagliotti G, Kim DW, Shaw AT, Ou SHI, Riely GJ, Gettinger SN, et al. A large retrospective analysis of the activity of pemetrexed (PEM) in patients (pts) with ALK-positive (ALK+) non-small cell lung cancer (NSCLC) prior to crizotinib (CRIZ). J Clin Oncol. 2012;30 (suppl; abstr 7599).

Lee JO, Kim TM, Lee SH, Kim DW, Kim S, Jeon YK, et al. Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J Thorac Oncol. 2011;6(9):1474-80.

Berge E, Delee M, Lu X, Barón AE, Solomon BJ, Doebele RC, et al. Clinical benefit from pemetrexed before and after crizotinib exposure in patients with ALK positive non-small cell lung cancer (ALK+ NSCLC). J Clin Oncol. 2012;30 (suppl; abstr 7601).

Park J, Kondo C, Shimizu J, Horio Y, Yoshida K, Mitsudomi T, et al. Chemosensitivity and clinical features of EML4-ALK-positive patients with advanced non-small cell lung cancer. J Clin Oncol. 2012;30 (suppl; abstr e18145).

Bertino EM, Zhao W, Villalona-Calero MA, Abdel Karim NF, Shilo K, Otterson GA. EML4-ALK in NSCLC: The OSU Experience. J Clin Oncol. 2011;29 (suppl; abstr e18014).

Zhang X, Zhang S, Yang X, Yang J, Zhou Q, Yin L, et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188.

Varella-García M, et al. ALK gene rearrangements in unselected Caucasians with non-small cell lung carcinoma (NSCLC) [abstract]. J Clin Oncol. 2010;a10533.

Yang P, Kulig K, Boland JM, Erickson-Johnson MR, Oliveira AM, Wampfler J, et al. Worse disease-free survival in neversmokers with ALK+ lung adenocarcinoma. J Thorac Oncol. 2012;7(1):90-7.

Solomon B, Shaw AT. Are anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer prognostic, predictive, or both? J Thorac Oncol. 2012;7(1):5-7.

Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12(11):1004-12.

Lee JK, Park HS, Kim DW, Kulig K, Kim TM, Lee SH, et al. Comparative analyses of overall survival in patients with anaplastic lymphoma kinase-positive and matched wild-type advanced nonsmall cell lung cancer. Cancer. 2011. http://dx.doi.org/10.1002/cncr.26668

Wu SG, Kuo YW, Chang YL, Shih JY, Chen YH, Tsai MF, et al. EML4-ALK translocation predicts better outcome in lung adenocarcinoma patients with wild-type EGFR. J Thorac Oncol. 2012;7(1):98-104.

Camidge DR, Bang Y, Kwak EL, Shaw AT, Iafrate AJ, Maki RG, et al. Progression-free survival (PFS) from a phase I study of crizotinib (PF02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2011;29 (suppl; abstr 2501).

Crinò L, Kim D, Riely GJ, Janne PA, Blackhall FH, Camidge DR, et al. Initial phase II results with crizotinib in advanced ALKpositive non-small cell lung cancer (NSCLC): PROFILE 1005. J Clin Oncol. 2011;29 (suppl; abstr 7514).

Weickhardt AJ, Rothman MS, Salian-Mehta S, Kiseljak-Vassiliades K, Oton AB, Doebele RC, et al. Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 2012 (in press).

Ou SH, Azada M, Dy J, Stiber JA. Asymptomatic profound sinus bradycardia (heart rate ≤45) in non-small cell lung cancer patients treated with crizotinib. J Thorac Oncol. 2011;6(12):2135-7.

Kim DW, Ahn MJ, Shi Y, De Pas TM, Yang PC, Riely GJ, et al. Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2012; 30 (suppl; abstr 7533).

Schnell P, Safferman AZ, Huang C, Tang Y, Wilner KD. Clinical presentation of hepatotoxicity-associated crizotinib in ALKpositive (ALK+) advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2012;30 (suppl; abstr 7598).

Zhang S, et al. AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066). Proc Am Assoc Cancer Res. 2010;51 (abstract LB298).

Rivera VM, et al. Efficacy and pharmacodynamic analysis of AP26113, a potent and selective orally active inhibitor of anaplastic lymphoma kinase (ALK). Proc Am Assoc Cancer Res 2010;51 (abstract 3623).

Sabbatini P, Korenchuk S, Rowand JL, Groy A, Liu Q, Leperi D, et al. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther. 2009;8(10):2811-20.

Rabindran SK, Sabbatini P, Korenchuk S, Groy A, Rowand JL, Liu Q, et al. Characterization of GSK1838705A, a small molecule inhibitor of the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase that delays growth of IGF-1R-dependent tumors and causes regression of ALK-dependent tumors in vivo. Proceedings oft the 100th Annual Meeting of the American Association for Cancer Research (AACR), 2010, Sep. 27-30, Denver (CO).

Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007;104(1):270- 5.

Van Roosbroeck K, Cools J, Dierickx D, Thomas J, Vandenberghe P, Stul M, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 2010;95(3):509-13.

Ardini E, Magnaghi P, Orsini P, Galvani A, Menichincheri M. Anaplastic lymphoma kinase: role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer Lett. 2010;299(2):81-94.

Grande E, Bolós MV, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther. 2011;10(4):569-79.

Cheng M, Ott GR. Anaplastic lymphoma kinase as a therapeutic target in anaplastic large cell lymphoma, non-small cell lung cancer and neuroblastoma. Anticancer Agents Med Chem. 2010;10(3):236-49.

Ambrogio C, Martinengo C, Voena C, Tondat F, Riera L, di Celle PF, et al. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 2009;69(22):8611-9.

Ardini E, Menichincheri M, De Ponti C, Amboldi N, Saccardo MB, Texido G, et al. Characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol Cancer Ther. 2009;8:A244.

Bossi RT, Saccardo MB, Ardini E, Menichincheri M, Rusconi L, Magnaghi P, et al. Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors. Biochemistry. 2010;49(32):6813-25.

Yang P, Kulig K, Boland JM, Erickson-Johnson MR, Oliveira AM, Wampfler J, et al. Worse disease-free survival in neversmokers with ALK+ lung adenocarcinoma. J Thorac Oncol. 2012;7(1):90-7.

Otterson GA, Riely GJ, Shaw AT, Crinò L, Kim DW, Martins R, et al. Progression (PD): potential implications for management. J Clin Oncol. 2012;30 (suppl; abstr 7600).

Costa DB, Kobayashi S, Pandya SS, Yeo WL, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29(15):e443-5.

Camidge DR, Doebele RC. Treating ALK-positive lung cancer- -early successes and future challenges. Nat Rev Clin Oncol. 2012;9(5):268-77.

Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012;4(120):120ra17.

Zhang S, Wang F, Keats J, Zhu X, Ning Y, Wardwell SD, et al. Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011;78(6):999-1005.

Doebele RC, Aisner DL, Le AT, Berge EM, Pilling AB, Kutateladze TG, et al. Analysis of resistance mechanisms to ALK kinase inhibitors in ALK+ NSCLC patients. J Clin Oncol. 2012;30 (suppl; abstr 7504).

Kris MG. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: the NCI’s Lung Cancer Mutation Consortium (LCMC) [abstract]. J Clin Oncol. 2011;29 (suppl.; CRA7506).

Ou SHI, Govindan R, Eaton KD, Otterson GA, Gutierrez MA, Mita AC, et al. Phase I/II dose-finding study of crizotinib (CRIZ) in combination with erlotinib (E) in patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2012;30 (suppl; abstr 2610).

Makhnevych T, Houry WA. The role of Hsp90 in protein complex assembly. Biochim Biophys Acta. 2012;1823(3):674-82.

Bonvini P, Gastaldi T, Falini B, Rosolen A. Nucleophosminanaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559-66.

Proia DA, Acquaviva J, Jiang Q, Xue L, Smith D, Friedland JC, et al. Preclinical activity of the Hsp90 inhibitor, ganetespib, in ALK- and ROS1-driven cancers. J Clin Oncol. 2012;30 (suppl; abstr 3090).

Citado por