Skip to main navigation menu Skip to main content Skip to site footer

Cytogenomics in cancer

Citogenómica en cáncer


Resumen gráfico Citogenómica en cáncer
Open | Download

How to Cite

1.
Yunis Hazbun LK, Vásquez Rodriguez MY, Yunis JJ. Cytogenomics in cancer. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 18];13(1-Supl):53-71. https://doi.org/10.51643/22562915.849

Download Citation

Citations


Section
Revisiones

How to Cite
1.
Yunis Hazbun LK, Vásquez Rodriguez MY, Yunis JJ. Cytogenomics in cancer. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 18];13(1-Supl):53-71. https://doi.org/10.51643/22562915.849

Dimensions
PlumX

Luz Karime Yunis Hazbun ,

Médica (MD), Magister en Genética Humana (MS), Doctora en Oncología (PhD). Directora médica de área.


Mike Yeferson Vásquez Rodriguez,

Biólogo, BS, analista de laboratorio análisis y desarrollo


Juan José Yunis,

MD, MSc. Servicios Médicos Yunis Turbay – Instituto de Genética.


Introduction: cytogenomics integrates classical cytogenetics with advanced genomic tools to identify structural genome alterations, reshaping cancer diagnosis and treatment within precision medicine.

Methods: a narrative review was conducted using 57 sources from 2010 to 2025, retrieved from PubMed, Scopus, Web of Science, and Google Scholar. Included materials were original articles, reviews, clinical guidelines, and technical documents. Keywords included cytogenomics, cancer, NGS, OGM, precision medicine, multi-omics, and artificial intelligence.

Results: techniques such as karyotyping, FISH, MLPA, microarrays, NGS, and optical genome mapping enable high-resolution detection of clinically relevant genomic alterations. Integration with artificial intelligence improves analytic accuracy. Multiomic strategies enhance tumor profiling and discovery of novel therapeutic targets. Clinical guidelines and international initiatives support clinical adoption.

Conclusions: cytogenomics, strengthened by AI and multi-omics, is transforming the clinical management of cancer. Despite technological and ethical challenges, its role in personalized oncology continues to expand.


Article visits 0 | PDF visits 0


Downloads

Download data is not yet available.
  1. Ribeiro IP, Melo JB, Carreira IM. Cytogenetics and Cytogenomics Evaluation in Cancer. Int J Mol Sci [Internet]. 2019;20(19):4711. Disponible en: https://doi.org/10.3390/ijms20194711
  2. Chebly A. Cancer cytogenetics in the era of artificial intelligence: shaping the future of chromosome analysis. Future Oncol [Internet]. 2024;20(31):2303-5. Disponible en: https://doi.org/10.1080/14796694.2024.2385296
  3. Liehr T, editor. Cytogenomics. London San Diego, Calif: Academic Press; [Internet]. 2021. Disponible en: https://doi.org/10.1016/C2020-0-00086-1
  4. Nowell PC. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut [Internet]. 1962;8(2):65-6. Disponible en: https://doi.org/10.1007/BF01630378
  5. Bernheim A. Cytogenomics of cancers: From chromosome to sequence. Mol Oncol [Internet]. 2010;4(4):309-22. Disponible en: https://doi.org/10.1016/j.molonc.2010.06.003
  6. Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet [Internet]. 1998;32(1):495-519. Disponible en: https://doi.org/10.1146/annurev.genet.32.1.495
  7. McGowan-Jordan J, Hastings RJ, Moore S, editores. ISCN 2020: An International System for Human Cytogenomic Nomenclature (2020) [Internet]. Karger; 2020. Disponible en: https://doi.org/10.1159/isbn.978-3-318-06867-2
  8. Liehr T. From Human Cytogenetics to Human Chromosomics. Int J Mol Sci [Internet]. 2019;20(4):826. Disponible en: https://doi.org/10.3390/ijms20040826
  9. Casper RM, Leonard K, Mpho M, Bono N, et al. Recent Molecular Techniques in Cytogenetics. Genetics. IntechOpen. [Internet]. 2025. Disponible en: http://dx.doi.org/10.5772/intechopen.1005877
  10. Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of Genetic Techniques: Past, Present, and Beyond. BioMed Res Int [Internet]. 2015;2015:461524. Disponible en: https://doi.org/10.1155/2015/461524
  11. Alhussain AH, Alquwayi WA, Alkuwaiti YAA, Almehainy AM, Alkhathami AA. Applications of Cytogenetics and Cytogenomics Evaluation techniques in cancer diagnosis: A review. Int J Health Sci [Internet]. 2019;3(S1):336-51. Disponible en: https://doi.org/10.53730/ijhs.v3ns1.15214
  12. Balciuniene J, Ning Y, Lazarus HM, et al. Cancer cytogenetics in a genomics world: Wedding the old with the new. Blood Rev [Internet]. 2024;66:101209. Disponible en: https://doi.org/10.1016/j.blre.2024.101209
  13. Nath J, Johnson KL. A Review of Fluorescence in Situ Hybridization (FISH): Current Status and Future Prospects. Biotech Histochem [Internet]. 2000;75(2):54-78. Disponible en: https://doi.org/10.3109/10520290009064150
  14. Marina AM. Fluorescence in situ hybridization (FISH). En: Arsham MS, Barch MJ, Lawce HJ, editores. The AGT Cytogenetics Laboratory Manual [Internet]. 4.a ed. Wiley; 2017. p. 717-831. Disponible en: https://doi.org/10.1002/9781119061199.ch16
  15. Ha J, Cho H, Lee TG, et al. Cytogenetic testing by fluorescence in situ hybridization is improved by plasma cell sorting in multiple myeloma. Sci Rep [Internet]. 2022;12(1):8287. Disponible en: https://doi.org/10.1038/s41598-022-11676-w
  16. Davé BJ, Sanger WG. Genomic microarray technologies for the cytogenetics laboratory. En: The AGT Cytogenetics Laboratory Manual [Internet]. Wiley; 2017. p. 903-36. Disponible en: https://doi.org/10.1002/9781119061199.ch18
  17. Heller MJ. DNA Microarray Technology: Devices, Systems, and Applications. Annu Rev Biomed Eng [Internet]. 2002;4:129-53. Disponible en: https://doi.org/10.1146/annurev.bioeng.4.020702.153438
  18. Bumgarner R. Overview of DNA Microarrays: Types, Applications, and Their Future. Curr Protoc Mol Biol [Internet]. 2013;101(1):22.1.1-22.1.11. Disponible en: https://doi.org/10.1002/0471142727.mb2201s101
  19. Wang Y, Liehr T. The Need for a Concert of Cytogenomic Methods in Chromosomic Research and Diagnostics. Genes [Internet]. 2025;16(5):533. Disponible en: https://doi.org/10.3390/genes16050533
  20. Rack KA, van den Berg E, Haferlach C, et al. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia [Internet]. 2019;33:1851-67. Disponible en: https://doi.org/10.1038/s41375-019-0378-z
  21. Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Hum Immunol [Internet]. 2021;82(11):801-11. Disponible en: https://doi.org/10.1016/j.humimm.2021.02.012
  22. Cheng C, Fei Z, Xiao P. Methods to improve the accuracy of next-generation sequencing. Front Bioeng Biotechnol [Internet]. 2023;11:982111. Disponible en: https://doi.org/10.3389/fbioe.2023.982111
  23. Mosele MF, Westphalen CB, Stenzinger A, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group. Ann Oncol [Internet]. 2024;35(7):588-606. Disponible en: https://doi.org/10.1016/j.annonc.2024.04.005
  24. Satam H, Joshi K, Mangrolia U, et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology [Internet]. 2023;12(7):997. Disponible en: https://doi.org/10.3390/biology12070997
  25. Yohe S, Thyagarajan B. Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med [Internet]. 2017;141(11):1544-57. Disponible en: https://doi.org/10.5858/arpa.2016-0501-RA
  26. Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol [Internet]. 2018;122(1):e59. Disponible en: https://doi.org/10.1002/cpmb.59
  27. Dey SK. Technological Advances in Cancer Cytogenetics. Genetics. IntechOpen [Internet]. 2024. Disponible en: http://dx.doi.org/10.5772/intechopen.1008240
  28. Gerding WM, Tembrink M, Nilius-Eliliwi V, et al. Optical genome mapping reveals additional prognostic information compared to conventional cytogenetics in AML/MDS patients. Int J Cancer [Internet]. 2022;150(12):1998-2011. Disponible en: https://doi.org/10.1002/ijc.33942
  29. Barseghyan H, Eisenreich D, Lindt E, et al. Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method. Genes [Internet]. 2024;15(3):342. Disponible en: https://doi.org/10.3390/genes15030342
  30. Schrauwen I, Rajendran Y, Acharya A, et al. Optical genome mapping unveils hidden structural variants in neurodevelopmental disorders. Sci Rep [Internet]. 2024;14(1):11239. Disponible en: https://doi.org/10.1038/s41598-024-62009-y
  31. Sahajpal NS, Mondal AK, Fee T, et al. Clinical Validation and Diagnostic Utility of Optical Genome Mapping in Prenatal Diagnostic Testing. J Mol Diagn [Internet]. 2023;25(4):234-46. Disponible en: https://doi.org/10.1016/j.jmoldx.2023.01.006
  32. Zou YS, Klausner M, Ghabrial J, et al. A comprehensive approach to evaluate genetic abnormalities in multiple myeloma using optical genome mapping. Blood Cancer J [Internet]. 2024;14(1):78. Disponible en: https://doi.org/10.1038/s41408-024-01059-x
  33. Kanagal-Shamanna R, Puiggros A, Granada I, et al. Integration of Optical Genome Mapping in the Cytogenomic and Molecular Work-Up of Hematological Malignancies: Expert Recommendations From the International Consortium for Optical Genome Mapping. Am J Hematol [Internet]. 2025;100(6):1029-48. Disponible en: https://doi.org/10.1002/ajh.27688
  34. Ballesta-Alcaraz L, Bernal M, Vilchez JR, et al. Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies. Int J Mol Sci [Internet]. 2025;26(12):5763. Disponible en: https://doi.org/10.3390/ijms26125763
  35. Levy B, Baughn LB, Akkari Y, et al. Optical genome mapping in acute myeloid leukemia: a multicenter evaluation. Blood Adv [Internet]. 2023;7(7):1297-307. Disponible en: https://doi.org/10.1182/bloodadvances.2022007583
  36. Shim Y, Koo YK, Shin S, et al. Comparison of Optical Genome Mapping With Conventional Diagnostic Methods for Structural Variant Detection in Hematologic Malignancies. Ann Lab Med [Internet]. 2024;44(4):324-34. Disponible en: https://doi.org/10.3343/alm.2023.0339
  37. Tsai MJM, Kao HJ, Chen HH, et al. Optical genome mapping with whole genome sequencing identifies complex chromosomal structural variations in acute leukemia. Front Genet [Internet]. 2025;16:1496847. Disponible en: https://doi.org/10.3389/fgene.2025.1496847
  38. Lestringant V, Guermouche-Flament H, Jimenez-Pocquet M, et al. Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization. Curr Res Transl Med [Internet]. 2024;72(3):103440. Disponible en: https://doi.org/10.1016/j.retram.2024.103440
  39. Toruner GA, Hu S, Loghavi S, et al. Clinical Utility of Optical Genome Mapping as an Additional Tool in a Standard Cytogenetic Workup in Hematological Malignancies. Cancers [Internet]. 2025;17(9):1436. Disponible en: https://doi.org/10.3390/cancers17091436
  40. Singh G, Kamalja A, Patil R, et al. A comprehensive assessment of artificial intelligence applications for cancer diagnosis. Artif Intell Rev [Internet]. 2024;57(7):179. Disponible en: https://doi.org/10.1007/s10462-024-10783-6
  41. Maqsood K, Hagras H, Zabet NR. An overview of artificial intelligence in the field of genomics. Discov Artif Intell [Internet]. 2024;4(1):9. Disponible en: https://doi.org/10.1007/s44163-024-00103-w
  42. Jeziorski K, Olszewski R. Artificial Intelligence in Oncology. Appl Sci [Internet]. 2025;15(1):269. Disponible en: https://doi.org/10.3390/app15010269
  43. Walter W, Haferlach C, Nadarajah N, et al. How artificial intelligence might disrupt diagnostics in hematology in the near future. Oncogene [Internet]. 2021;40(25):4271-80. Disponible en: https://doi.org/10.1038/s41388-021-01861-y
  44. Duong D, Solomon BD. Artificial intelligence in clinical genetics. Eur J Hum Genet [Internet]. 2025;33(3):281-8. Disponible en: https://doi.org/10.1038/s41431-024-01782-w
  45. Zhou Y, Xu L, Zhang L, Shi D, Wu C, Wei R, et al. Enhancing chromosomal analysis efficiency through deep learning-based artificial intelligence graphic analysis. Discov Appl Sci [Internet]. 2024;6:299. Disponible en: https://doi.org/10.1007/s42452-024-05980-5
  46. Rosenblum LS, Holmes J, Taghiyev AF. The Emergence of Artificial Intelligence-Guided Karyotyping: A Review and Reflection. Genes [Internet]. 2025;16(6):685. Disponible en: https://doi.org/10.3390/genes16060685
  47. Felici A, Peduzzi G, Pellungrini R, Campa D. Artificial intelligence to predict cancer risk, are we there yet? A comprehensive review across cancer types. Eur J Cancer [Internet]. 2025;228:115716. Disponible en: https://doi.org/10.1016/j.ejca.2025.115716
  48. Macheka S, Ng PY, Ginsburg O, et al. Prospective evaluation of artificial intelligence (AI) applications for use in cancer pathways following diagnosis: a systematic review. BMJ Oncol [Internet]. 2024;3(1):e000255. Disponible en: https://doi.org/10.1136/bmjonc-2023-000255
  49. Shirazi AZ, Tofighi M, Gharavi A, Gomez GA. The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide. Cancer Control [Internet]. 2024;31:15330338241250324. Disponible en: https://doi.org/10.1177/15330338241250324
  50. Mani S, Lalani SR, Pammi M. Genomics and multiomics in the age of precision medicine. Pediatr Res [Internet]. 2025;97:1399-1410. Disponible en: https://doi.org/10.1038/s41390-025-04021-0
  51. Zack M, Stupichev DN, Moore AJ, et al. AI and Multi-Omics in Pharmacogenomics: A New Era of Precision Medicine. Mayo Clin Proc Digit Health [Internet]. 2025;3(3):100246. Disponible en: https://doi.org/10.1016/j.mcpdig.2025.100246
  52. Shao Y, Lv X, Ying S, Guo Q. Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL). Front Biosci-Landmark [Internet]. 2024;29(12):404. Disponible en: https://doi.org/10.31083/j.fbl2912404
  53. Kioroglou D, Gil-Redondo R, Embade N, et al. Multi-omic integration sets the path for early prevention strategies on healthy individuals. Npj Genomic Med [Internet]. 2025;10:35. Disponible en: https://doi.org/10.1038/s41525-025-00491-7
  54. Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front Mol Biosci [Internet]. 2022;9:962743. Disponible en: https://doi.org/10.3389/fmolb.2022.962743
  55. Ikwelle TA, Ihim AC, Ozuruoke DFN, et al. Multi-Omics Integration in Personalized Medicine: Advancing Laboratory Diagnostics and Precision Therapeutics in the Era of Individualized Healthcare. J Drug Deliv Ther [Internet]. 2025;15(5):132-42. Disponible en: https://doi.org/10.22270/jddt.v15i5.7121
  56. Molla G, Bitew M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data generation, Main Hurdles, and Future Perspectives. Biomedicines [Internet]. 2024;12(12):2750. Disponible en: https://doi.org/10.3390/biomedicines12122750
  57. Mohr AE, Ortega-Santos CP, Whisner CM, et al. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines [Internet]. 2024;12(7):1496. Disponible en: https://doi.org/10.3390/biomedicines12071496
  58. Shimony S, Stahl M, Stone RM. Acute Myeloid Leukemia: 2025 Update on Diagnosis, Risk-Stratification, and Management. Am J Hematol [Internet]. 2025;100(5):860-91. Disponible en: https://doi.org/10.1002/ajh.27625
Sistema OJS 3.4.0.7 - Metabiblioteca |