Skip to main navigation menu Skip to main content Skip to site footer

Tumor genomics: historical development and perspectives for the future

Genómica tumoral: construcción histórica y perspectivas para el futuro


Resumen gráfico Genómica tumoral: construcción histórica y perspectivas para el futuro
Open | Download

How to Cite

1.
Castillo-Venegas L, Cardona AF. Tumor genomics: historical development and perspectives for the future. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 18];13(1-Supl):450-73. https://doi.org/10.51643/22562915.837

Download Citation

Citations


Section
Artículos especiales

How to Cite
1.
Castillo-Venegas L, Cardona AF. Tumor genomics: historical development and perspectives for the future. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 18];13(1-Supl):450-73. https://doi.org/10.51643/22562915.837

Dimensions
PlumX

Lorenzo Castillo-Venegas,

MD, MSc.


Andrés Felipe Cardona,

Jefe de investigación, ciencia y educación del Centro de Investigación y Tratamiento del Cáncer Luis Carlos Sarmiento Angulo. Médico y Especialista en Epidemiología de la Universidad del Rosario (Bogotá, Colombia). Estudios de posgrado en Medicina Interna (Universidad Javeriana, Bogotá, Colombia), Oncología Clínica (Universidad El Bosque, Bogotá, Colombia), epidemiología relacionada con el cáncer orientada al desarrollo de ensayos clínicos (Universidades de Barcelona a Sevilla, España) y epidemiología clínica (Universidad de Sevilla, España). Doctorado en Genómica Tumoral con énfasis en investigación traslacional (Universidad Autónoma de Barcelona, España).


Introduction: from the discovery of the Philadelphia chromosome to the advent of next-generation sequencing (NGS), cancer genomics has transformed the molecular understanding of cancer. This article presents a narrative review with historical reconstruction, key milestones, major barriers, and future perspectives in tumor genomics.

Methods: a systematic search was conducted in three international databases; out of 137 records, 29 articles were selected for full review, along with various primary historical sources.

Results: this work examines technological evolution, clinical milestones, and the impact of genomics on oncology practice. In addition, some current challenges and future perspectives for its implementation were discussed.

Discussion: despite reviewing a time span of just over half a century, the research team acknowledges that these concepts are still constantly evolving and that overcoming current genomic barriers will likely be the next major milestone. Oncogenomics may be entering a golden era; its clinical implementation is increasingly becoming a reality and a standard.

Conclusion: in the era of massive data analysis, artificial intelligence, and robust global collaboration consortia, critically looking back at the past can also strengthen future steps. Cancer is now understood as a disease of the genome; however, it remains necessary to continue overcoming theoretical, scientific, implementation, accessibility, and cross-disciplinary obstacles.


Article visits 0 | PDF visits 0


Downloads

Download data is not yet available.
  1. Stafford N. Janet Rowley. BMJ [Internet]. 2014;348. Disponible en: https://doi.org/10.1136/bmj.g447
  2. Fonseca-Montaño MA, Blancas S, Herrera-Montalvo LA, Hidalgo-Miranda A. Cancer Genomics. Arch Med Res. [Internet]. 2022;53(8):723-31. Disponible en: https://doi.org/10.1016/j.arcmed.2022.11.011
  3. Yates LR, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet. [Internet]. 2012;13(11):795-806. Disponible en: https://doi.org/10.1038/nrg3317
  4. Lee-Six H. Somatic evolution in human blood and colon. Doctoral tesis University of Cambridge. 2018. Disponible en: https://doi.org/10.17863/CAM.37059
  5. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. [Internet]. 2009;458(7239):719-24. Disponible en: https://doi.org/10.1038/nature07943
  6. Nowell C. The minute chromosome (Ph1) in chronic granulocytic leukemia. Blut. [Internet]. 1962;8(2):65-6. Disponible en: https://doi.org/10.1007/bf01630378
  7. Rowley JD. A New Consistent Chromosomal Abnormality in Chronic Myelogenous Leukaemia identified by Quinacrine Fluorescence and Giemsa Staining. Nature. [Internet]. 1973;243(5405):290-3. Disponible en: https://doi.org/10.1038/243290a0
  8. Groffen J, Stephenson J, Heisterkamp N, Deklein A, Bartram C, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. [Internet]. 1984;36(1):93-9. Disponible en: https://doi.org/10.1016/0092-8674(84)90077-1
  9. Spector DH, Smith K, Padgett T, McCombe P, Roulland-Dussoix D, Moscovici C, et al. Uninfected avian cells contain RNA related to the transforming gene of avian sarcoma viruses. Cell. [Internet]. 1978;13(2):371-9. Disponible en: https://doi.org/10.1016/0092-8674(78)90205-2
  10. Shampo MA, Kyle RA. J. Michael Bishop—Nobel Laureate in Medicine or Physiology. Mayo Clinic Proceedings. [Internet]. 2002;77(12):1312. Disponible en: https://doi.org/10.4065/77.12.1312
  11. Nowell PC. The Clonal Evolution of Tumor Cell Populations: Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression. Science. [Internet]. 1976;194(4260):23-8. Disponible en: https://doi.org/10.1126/science.959840
  12. Rowley JD. Chromosome abnormalities in leukemia. J Clin Oncol. [Internet]. 1988;6(2):194-202. Disponible en: https://doi.org/10.1200/JCO.1988.6.2.194
  13. Ribeiro IP, Melo JB, Carreira IM. Cytogenetics and Cytogenomics Evaluation in Cancer. IJMS. [Internet]. 2019;20(19):4711. Disponible en: https://doi.org/10.3390/ijms20194711
  14. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring Harbor Symposia on Quantitative Biology. [Internet]. 1986;51(0):263-73. Disponible en: https://doi.org/10.1101/sqb.1986.051.01.032
  15. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N Engl J Med. [Internet]. 2001;344(11):783-92. Disponible en: https://doi.org/10.1056/nejm200103153441101
  16. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. [Internet]. 1977;74(12):5463-7. Disponible en: https://doi.org/10.1073/pnas.74.12.5463
  17. International Human Genome Sequencing Consortium, Whitehead Institute for Biomedical Research, Center for Genome Research:, Lander ES, Linton LM, Birren B, Nusbaum C, et al. Initial sequencing and analysis of the human genome. Nature. [Internet]. 2001;409(6822):860-921. Disponible en: https://doi.org/10.1038/35079657
  18. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends in Genetics. [Internet]. 1993;9(4):138-41. Disponible en: https://doi.org/10.1016/0168-9525(93)90209-z
  19. Rubin MA, Demichelis F. The Genomics of Prostate Cancer: A Historic Perspective. Cold Spring Harb Perspect Med. [Internet]. 2019;9(3):a034942. Disponible en: https://doi.org/10.1101/cshperspect.a034942
  20. Casolino R, Beer PA, Chakravarty D, Davis MB, Malapelle U, Mazzarella L, et al. Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance. CA Cancer J Clin. [Internet]. 2024;74(3):264-85. Disponible en: https://doi.org/10.3322/caac.21825
  21. Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, et al. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells. [Internet]. 2024;13(6):504. Disponible en: https://doi.org/10.3390/cells13060504
  22. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. [Internet]. 2016;107(1):1-8. Disponible en: https://doi.org/10.1016/j.ygeno.2015.11.003
  23. Torres-Narvaez ES, Mendivelso-González DF, Artunduaga-Alvarado JA, Ortega-Recalde O. Cancer genomics and bioinformatics in Latin American countries: applications, challenges, and perspectives. Front Oncol. [Internet]. 2025;15:1584178. Disponible en: https://doi.org/10.3389/fonc.2025.1584178
  24. Wang D, Liu B, Zhang Z. Accelerating the understanding of cancer biology through the lens of genomics. Cell. [Internet]. 2023;186(8):1755-71. Disponible en: https://doi.org/10.1016/j.cell.2023.02.015
  25. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol. [Internet]. 2018;15(6):353-65. Disponible en: https://doi.org/10.1038/s41571-018-0002-6
  26. De Las Salas B, Sánchez N, Gutiérrez L, Pérez S, Mercado V, Becerra P, et al. Investigación clínica en la era de la inmunoterapia y la genómica. Med. [Internet]. 2024;46(2):372-92. Disponible en: https://doi.org/10.56050/01205498.2371
  27. Sakamoto Y, Sereewattanawoot S, Suzuki A. A new era of long-read sequencing for cancer genomics. J Hum Genet. [Internet]. 2020;65(1):3-10. Disponible en: https://doi.org/10.1038/s10038-019-0658-5
  28. Valenti F, Falcone I, Ungania S, Desiderio F, Giacomini P, Bazzichetto C, et al. Precision Medicine and Melanoma: Multi-Omics Approaches to Monitoring the Immunotherapy Response. IJMS. [Internet]. 2021;22(8):3837. Disponible en: https://doi.org/10.3390/ijms22083837
  29. Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel). [Internet]. 2020;8(1):18. Disponible en: https://doi.org/10.3390/medsci8010018
  30. Liskova A, Samec M, Koklesova L, Giordano FA, Kubatka P, Golubnitschaja O. Liquid Biopsy is Instrumental for 3PM Dimensional Solutions in Cancer Management. JCM. [Internet]. 2020;9(9):2749. Disponible en: https://doi.org/10.3390/jcm9092749
  31. Moldogazieva NT, Zavadskiy SP, Terentiev AA. Genomic Landscape of Liquid Biopsy for Hepatocellular Carcinoma Personalized Medicine. Cancer Genomics Proteomics. [Internet]. 2021;18(3 Suppl):369-83. Disponible en: https://doi.org/10.21873/cgp.20266
  32. Cammarata G, De Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C, et al. Emerging noncoding RNAs contained in extracellular vesicles: rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol. [Internet]. 2022;14:17588359221131229. Disponible en: https://doi.org/10.1177/17588359221131229
  33. Black JRM, McGranahan N. Genetic and non-genetic clonal diversity in cancer evolution. Nat Rev Cancer. [Internet]. 2021;21(6):379-92. Disponible en: https://doi.org/10.1038/s41568-021-00336-2
  34. Mustachio LM, Roszik J. Single-Cell Sequencing: Current Applications in Precision Onco-Genomics and Cancer Therapeutics. Cancers. [Internet]. 2022;14(3):657. Disponible en: https://doi.org/10.3390/cancers14030657
  35. Bowes AL, Tarabichi M, Pillay N, Van Loo P. Leveraging single‐cell sequencing to unravel intratumour heterogeneity and tumour evolution in human cancers. The Journal of Pathology. [Internet]. 2022;257(4):466-78. Disponible en: https://doi.org/10.1002/path.5914
  36. Mulder NJ, Adebiyi E, Adebiyi M, Adeyemi S, Ahmed A, Ahmed R, et al. Development of Bioinformatics Infrastructure for Genomics Research. Glob Heart. [Internet]. 2017;12(2):91-98. Disponible en: https://globalheartjournal.com/article/10.1016/j.gheart.2017.01.005
  37. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. [Internet]. 2020;578(7793):82-93. Disponible en: https://doi.org/10.1038/s41586-020-1969-6
  38. Pan D, Jia D. Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity. Front Mol Biosci. [Internet]. 2021;8:757024. Disponible en: https://doi.org/10.3389/fmolb.2021.757024
  39. Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol. [Internet]. 2021;9:681100. Disponible en: https://doi.org/10.3389/fevo.2021.681100
  40. Williams ST, Wells G, Conroy S, Gagg H, Allen R, Rominiyi O, et al. Precision oncology using ex vivo technology: a step towards individualised cancer care? Expert Rev Mol Med. [Internet]. 2022;24:e39. Disponible en: https://doi.org/10.1017/erm.2022.32
  41. Cancer Genomics: The Road Ahead. Cell. [Internet]. 2013;155(1):9-10. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0092867413011513
  42. McVeigh TP, Hughes LM, Miller N, Sheehan M, Keane M, Sweeney KJ, et al. The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral centre. European Journal of Cancer. [Internet]. 2014;50(16):2763-70. Disponible en: https://doi.org/10.1016/j.ejca.2014.08.002
  43. Allemand C, Valerio AC, Calvo MF, Izbizky G, McLean I, Terrier F, et al. Impacto del Score de Recurrencia de 21 genes (Oncotype DX®) sobre la toma de decisión en tratamiento adyuvante: un estudio multicéntrico y colaborativo / Impact of the 21-gene Recurrence Score (Oncotype DX®) on decision-making in adjuvant treatment: a multicenter and collaborative study. Rev Argent Mastología [Internet]. 2024;42(154):13-27. Disponible en: https://doi.org/10.29289/2594539420210026
  44. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. [Internet]. 2018;379(2):111-21. Disponible en: https://doi.org/10.1056/NEJMoa1804710
  45. Carugo A, Draetta GF. Academic Discovery of Anticancer Drugs: Historic and Future Perspectives. Annu Rev Cancer Biol. [Internet]. 2019;3(1):385-408. Disponible en: https://doi.org/10.1146/annurev-cancerbio-030518-055645
  46. Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell. [Internet]. 2022;40(5):458-78. Disponible en: https://doi.org/10.1016/j.ccell.2022.04.002
  47. O’Loughlin TA, Gilbert LA. Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. Annu Rev Cancer Biol. [Internet]. 2019;3(1):345-63. Disponible en: https://doi.org/10.1146/annurev-cancerbio-030518-055742
  48. Kabadi A, McDonnell E, Frank CL, Drowley L. Applications of Functional Genomics for Drug Discovery. SLAS Discov. [Internet]. 2020;25(8):823-42. Disponible en: https://doi.org/10.1177/2472555220902092
  49. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Sig Transduct Target Ther. [Internet]. 2020;5(1):1. Disponible en: https://doi.org/10.1038/s41392-019-0089-y
  50. Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, et al. Exploiting the CRISPR‐Cas9 gene‐editing system for human cancers and immunotherapy. Clin & Trans Imm. [Internet]. 2021;10(6):e1286. Disponible en: https://doi.org/10.1002/cti2.1286
  51. Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AMK, et al. Cancer Genomics: Technology, Discovery, and Translation. JCO. [Internet]. 2012;30(6):647-60. Disponible en: https://doi.org/10.1200/jco.2011.39.2316
  52. Vera J, Lai X, Baur A, Erdmann M, Gupta S, Guttà C, et al. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Briefings in Bioinformatics. [Internet]. 2022;23(6):bbac433. Disponible en: https://doi.org/10.1093/bib/bbac433
  53. Valent P, Orfao A, Kubicek S, Staber P, Haferlach T, Deininger M, et al. Precision Medicine in Hematology 2021: Definitions, Tools, Perspectives, and Open Questions. HemaSphere. [Internet]. 2021;5(3):e536. Disponible en: https://doi.org/10.1097/hs9.0000000000000536
  54. Ruíz-Patiño A. Futuro de la oncología personalizada y el diagnóstico molecular. Med. [Internet]. 2024;46(2):442-50. Disponible en: https://doi.org/10.56050/01205498.2375
Sistema OJS 3.4.0.7 - Metabiblioteca |