Skip to main navigation menu Skip to main content Skip to site footer

New frontiers in precision oncology: transcriptomics and proteomics

Nuevas fronteras en la oncología de precisión: la transcriptómica y la proteómica


Resumen gráfico Nuevas fronteras en la oncología de precisión: la transcriptómica y la proteómica
Open | Download

How to Cite

1.
Aristizábal Pachón AF, Rodríguez Ariza JK. New frontiers in precision oncology: transcriptomics and proteomics. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 18];13(1-Supl):100-18. https://doi.org/10.51643/22562915.835

Download Citation

Citations


Section
Revisiones

How to Cite
1.
Aristizábal Pachón AF, Rodríguez Ariza JK. New frontiers in precision oncology: transcriptomics and proteomics. Rev. colomb. hematol. oncol. [Internet]. 2026 Feb. 17 [cited 2026 Feb. 18];13(1-Supl):100-18. https://doi.org/10.51643/22562915.835

Dimensions
PlumX

Andrés Felipe Aristizábal Pachón,

Director de Investigaciones y Enlace Médico en la Fundación para la Investigación Clínica y Molecular Aplicada al Cáncer – FICMAC, ha sido profesor e investigador de reconocidas universidades de Colombia, liderando proyectos de investigación y la formación de estudiantes de maestría y doctorado en el área del cáncer. Profesional con maestría, doctorado y posdoctorado, formado en la escuela de medicina de la Universidad de São Paulo, la Universidad de los Andes y la Universidad de Caldas.


July Katherine Rodríguez Ariza,

Licenciada en Biología, Magíster en Ciencias Biológicas y Magíster en Gerencia de Proyectos, con 14 años de experiencia en biología molecular aplicada a la medicina de precisión en oncología. Ha liderado la implementación, validación y operación de pruebas genéticas y de plataformas de secuenciación de nueva generación (NGS), así como el desarrollo de modelos de calidad, mejora continua y gestión científica en laboratorios clínicos. Su trabajo integra la investigación traslacional, la dirección de proyectos y la articulación con equipos médicos para optimizar diagnósticos y apoyar la toma de decisiones clínicas basadas en biomarcadores. Actualmente directora científica de la Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer. 


The integration of transcriptomics and proteomics in the study of cancer has significantly changed how we understand tumor biology, while also opening new possibilities for diagnosis and patient classification. Transcriptomics facilitates the identification of gene expression profiles, fusions, and the regulatory role of different non-coding RNAs in neoplastic progression; on the other hand, proteomics provides a more direct approach to cellular function, revealing active proteins and their post-translational modifications, crucial aspects in signaling mechanisms and treatment resistance. Although both disciplines have developed established clinical tools in precision oncology, limitations persist in reproducibility, standardization, and accessibility, particularly in resource-limited settings. Given this, integrative multi-omic approaches, supported by artificial intelligence and emerging technologies such as single-cell and spatial omics, are emerging as a promising way to reflect the biological complexity of cancer and advance toward dynamic diagnostics and personalized therapeutic strategies.


Article visits 0 | PDF visits 0


Downloads

Download data is not yet available.
  1. Kim HK, Kim T. Integrating Multi-Omics in Endometrial Cancer: From Molecular Insights to Clinical Applications. Cells. [Internet] 2025;8;14(17):1404-1014. Disponible en: https://doi.org/10.3390/cells14171404
  2. Sánchez-Bouza M, Sánchez-Frenes P, Ayala-Reina Z, Sánchez-Sánchez P, Santos-Solís M. Una mirada al cáncer desde la perspectiva molecular. Rev Finlay. [Internet] 2022;12(2):208–20. Disponible en: https://revfinlay.sld.cu/index.php/finlay/article/view/1027
  3. Zhu X, Zhao W, Zhou Z, Gu X. Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools. J Mol Evol. [internet] 2023;91(4):405-423. Disponible en: https://doi.org/10.1007/s00239-023-10117-0
  4. Merino JL, Guzmán G, Fernández-Cuadrado J. Ablación de la fibrilación auricular asistida por tomografía computarizada. Revista Española de Cardiología. [Internet] 2009;62(3):314-321. Disponible en: https://doi.org/10.1016/s0300-8932(09)70376-8
  5. Ubaid S, Kushwaha R, Kashif M, Singh V. Comprehensive analysis of oncogenic determinants across tumor types via multi-omics integration. Cancer Genetics. [internet] 2025;298-299:44-62. Disponible en https://doi.org/10.1016/j.cancergen.2025.08.010
  6. Martins Rodrigues F, Terekhanova NV, Imbach KJ, Porta-Pardo E, Ding L, et al. Precision proteogenomics reveals pan-cancer impact of germline variants. Cell. [Internet] 2025;188(9):2312-2335.e26. Disponible en: https://doi.org/10.1016/j.cell.2025.03.026
  7. Garg P, Krishna M, Kulkarni P, Horne D, Ravi Salgia, Singhal SS. Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions. Cancers. [Internet] 2025;27(17):2790–9. Disponible en: https://doi.org/10.3390/cancers17172799
  8. Timms JF, Hale OJ, Cramer R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Review of Proteomics. [Internet] 2016;13(6):593–607. Disponible en: https://doi.org/10.1080/14789450.2016.1182431
  9. Hajjo R, Sabbah DA, Bardaweel SK, Zhong HA. Targeting the EGFR/RAS/RAF signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert opinion on therapeutic patents. [Internet] 2024;12:1–19. Disponible en: https://doi.org/10.1080/13543776.2024.2327307
  10. Fung JN, Pio R. Genetic variants in complement-related genes: potential implications for cancer risk and progression. Immunobiology. [Internet] 2025;230(4):153100. Disponible en: https://doi.org/10.1016/j.imbio.2025.153100
  11. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. [Internet] 1999;286(5439):531–7. Disponible en: https://doi.org/10.1126/science.286.5439.531
  12. Chen Z, He X. Application of third-generation sequencing in cancer research. Med Rev. [Internet] 2021;1(2):150-171. Disponible en: https://doi.org/10.1515/mr-2021-0013
  13. Wang Y, Mashock M, Tong Z, Mu X, Chen H, Zhou X, Zhang H, Zhao G, Liu B, Li X. Changing Technologies of RNA Sequencing and Their Applications in Clinical Oncology. Front Oncol. [Internet] 2020;10:447-456. Disponible en: https://doi.org/10.3389/fonc.2020.00447.
  14. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. [Internet] 2009;10(1):57-63. Disponible en https://doi.org/10.1038/nrg2484.
  15. Byrne A, Beaudin AE, Olsen HE, Jain M, Cole C, Palmer T, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun. [Internet] 2017;8:16027-35. Disponible en: https://doi.org/10.1038/ncomms16027
  16. Schmidt F, Efferth T. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance. Pharmaceuticals. [Internet] 2016; 9(2):33-29. Disponible en: https://doi.org/10.3390/ph9020033
  17. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. [Internet] 2009;6(5):377–82. Disponible en: https://doi.org/10.1038/nmeth.1315
  18. Xiang L, Rao J, Yuan J, Xie T, Yan H. Single-Cell RNA-Sequencing: Opening New Horizons for Breast Cancer Research. International Journal of Molecular Sciences. [Internet] 2024; 25(17):9482-95. Disponible en: https://doi.org/10.3390/ijms25179482
  19. Xiang L, Rao J, Yuan J, Xie T, Yan H. Single-Cell RNA-Sequencing: Opening New Horizons for Breast Cancer Research. International Journal of Molecular Sciences. [Internet] 2024; 25(17):9482-90. Disponible en: https://doi.org/10.3390/ijms25179482
  20. Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol. [Internet] 2023;14:1285540. Disponible en: https://doi.org/10.3389/fimmu.2023.1285540
  21. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. [Internet] 2004;351(27):2817–26. Disponible en: https://doi.org/10.1056/nejmoa041588
  22. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. [Internet] 2002;415(6871):530–6. Disponible en: https://doi.org/10.1038/415530a
  23. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. [Internet] 2015;21:1253–61. Disponible en: https://doi.org/10.1038/nm.3981
  24. Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer. [Internet] 2024;23:189. Disponible en https://doi.org/10.1186/s12943-024-02101-z
  25. Mohammadi E, Tahmoorespur M, Benfeitas R, Altay O, Javadmanesh A, et al. Improvement of the performance of anticancer peptides using a drug repositioning pipeline. Biotechnol J. [Internet] 2022;17(1):e2100417. Disponible en: https://doi.org/10.1002/biot.202100417
  26. Carrillo-Rodriguez P, Selheim F, Hernandez-Valladares M. Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps. Cancers (Basel). [Internet] 2023;15(2):555-60. Disponible en: https://doi.org/10.3390/cancers15020555
  27. Louati K, Kolsi F, Mellouli M, Louati H, Zribi R, Kallel R, et al. The Identification by Shotgun Proteomics with High-Resolution Tandem Mass-Spectrometry of Histone Isoforms' Hypermethylation Phenotype as a Hallmark Characteristic of Human-IDH-Mutant High-Grade Gliomas: Epigenetic Applications for Genotoxicity-Based Biomarkers and Cancer Therapy Targets. J Proteome Res. [Internet] 2025;24(9):4503-4525. Disponible en: https://doi.org/10.1021/acs.jproteome.5c00158.s001
  28. Mermelekas G, Vlahou A, Zoidakis J. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn. [Internet] 2015;15(11):1441-54. Disponible en: https://doi.org/10.1586/14737159.2015.1093937
  29. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. [Internet] 2018;14(8):e8126. Disponible en: https://doi.org/10.15252/msb.20178126
  30. Naudot M, Le Ber J, Marcelo P. TMT-Based Quantitative Proteomics Analysis Reveals Differentially Expressed Proteins between Different Sources of hMSCs. International Journal of Molecular Sciences. [Internet] 2023; 24(17):13544. Disponible en: https://doi.org/10.3390/ijms241713544
  31. Mantini G, Pham TV, Piersma SR, Jimenez CR. Computational Analysis of Phosphoproteomics Data in Multi-Omics Cancer Studies. Proteomics. [Internet] 2021;21(3-4):e1900312. Disponible en: https://doi.org/10.1002/pmic.201900312
  32. Wu X, Xing X, Dowlut D, Zeng Y, Liu J, Liu X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J Proteomics. [Internet] 2019;191:68-79. Disponible en: https://doi.org/10.1016/j.jprot.2018.03.033
  33. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. [Internet] 2016;537(7620):347–55. Disponible en: https://doi.org/10.1038/nature19949
  34. Grzeski, M., Jensen, P. M., Hempel, B.-F., Thiele, H., Lellmann, J., Schallenberg, S., Budach, V., Keilholz, U., Tinhofer, I., & Klein, O. Integrating MALDI-MSI-Based Spatial Proteomics and Machine Learning to Predict Chemoradiotherapy Outcomes in Head and Neck Cancer. Int. J. Mol. Sci. [Internet] 2025; 26(18): 9084. Disponible en: https://doi.org/10.3390/ijms26189084
  35. Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. [Internet] 2021;6(1):218. Disponible en: https://doi.org/10.1038/s41392-021-00641-0
  36. Calderón-Rodríguez, Sandra Isabel, & Umaña-Pérez, Adriana. Estudio proteómico 2DE-DIGE en plasma sanguíneo de pacientes en etapa infantil con leucemia linfoblástica aguda. Revista Colombiana de Química. [Internet] 2019;48(1):5-15. Disponible en: https://doi.org/10.15446/rev.colomb.quim.v48n1.75170
  37. Reyes Tejera L, Fernández González OL, Alvarez Hernández JC. Biomarcadores salivales y su utilidad en la detección precoz del cáncer bucal. Rev. cuban. med. mil. [Internet] 2024;53(2): e024026095. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572024000200046&lng=es.
  38. Taguchi F, Solomon B, Gregorc V, Roder H, Gray R, Kasahara K, et al. Mass spectrometry to classify non–small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Inst. [Internet] 2007;99(11):838–46. Disponible en: https://doi.org/10.1093/jnci/djk195
  39. Ueland FR, Desimone CP, Seamon LG, Miller RA, Goodrich S, Podzielinski I, et al. Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet Gynecol. [Internet] 2011;117(6):1289–97. Disponible en: https://doi.org/10.1097/aog.0b013e31821b5118
  40. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. [Internet] 2018;20(3):332–43. Disponible en https://doi.org/10.1038/s41556-018-0040-4
  41. Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, Ilgisonis EV, Lisitsa AV, Poverennaya EV. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes (Basel). [Internet] 2023;14(11):2065-72. Disponible en: https://doi.org/10.3390/genes14112065
  42. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. [Internet] 2014;513:382–7. Disponible en: https://doi.org/10.1038/nature13438
  43. Zhang C, Li N, Zhang P, Jiang Z, Cheng Y, Li H, Pang Z. Advancing precision and personalized breast cancer treatment through multi-omics technologies. Am J Cancer Res. [Internet] 2024;14(12):5614-5627. Disponible en: https://doi.org/10.62347/mwnz5609
  44. Kerr K, McAneney H, Smyth LJ, Bailie C, McKee S, McKnight AJ. A scoping review and proposed workflow for multi-omic rare disease research. Orphanet J Rare Dis. [Internet] 2020;15(1):107. Disponible en: https://doi.org/10.1186/s13023-020-01376-x
  45. Huang S, Chaudhary K, Garmire LX. More is better: Recent progress in multi-omics data integration methods. Front Genet. [Internet] 2017;8:84. Disponible en: https://doi.org/10.3389/fgene.2017.00084
  46. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. [Internet] 2016;534:55–62. Disponible en: https://doi.org/10.1038/nature18003
  47. Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK, et al. Connecting genomic alterations to cancer biology with proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. [Internet] 2013;3(10):1108–12. Disponible en: https://doi.org/10.1158/2159-8290.cd-13-0219
  48. Redig AJ, Jänne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol. [Internet] 2015;33(9):975–7. Disponible en: https://doi.org/10.1200/jco.2014.59.8433
  49. Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. [Internet] 2021;39(4):509–528.e20. Disponible en: https://doi.org/10.1016/j.ccell.2021.01.006
  50. Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. [Internet] 2025;188(24):7016. Disponible en: https://doi.org/10.1016/j.cell.2025.10.043
  51. Manuilova I, Bossenz J, Weise A, Boehm D, Döbel M, Werle S, et al. Uncovering the Understanding of the Concept of Patient Similarity in Cancer Research and Treatment: Scoping Review. J Med Internet Res. [Internet] 2025;27:e71906. Disponible en: https://doi.org/10.2196/71906
  52. Zou J, Wang E. Cancer Biomarker discovery for precision medicine: new progress. Curr Med Chem. [Internet] 2019;26(42):7655-7671. Disponible en: https://doi.org/10.2174/0929867325666180718164712
  53. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. [Internet] 2016;352:189–96. Disponible en: https://doi.org/10.1126/science.aad0501
  54. Marx V. Method of the year: spatially resolved transcriptomics. Nat Methods. [Internet] 2021;18:9–14. Disponible en: https://doi.org/10.1038/s41592-020-01033-y
  55. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. [Internet] 2015;13:8–17. Disponible en: https://doi.org/10.1016/j.csbj.2014.11.005
  56. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. [Internet] 2013;10(8):472–84. Disponible en: https://doi.org/10.1038/nrclinonc.2013.110
  57. Adesina A, Chumba D, Nelson AM, Orem J, Roberts DJ, Wabinga H, et al. Improvement of pathology in sub-Saharan Africa. Lancet Oncol. [Internet] 2013;14(4):e152–7. Disponible en: https://doi.org/10.1016/S1470-2045(12)70598-3
Sistema OJS 3.4.0.7 - Metabiblioteca |