Importance of molecular tests in myeloproliferative neoplasia with eosinophilia and PDGFRB rearrangement. Case Report
Importancia de las pruebas moleculares en neoplasia mieloproliferativa con eosinofilia y reordenamiento PDGFRB. Reporte de caso
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Show authors biography
Reactive eosinophilia occurs due to the overproduction of cytokines such as IL-3, IL-5 or GM-CSF, which are associated with allergies, infectious processes, medications, autoimmune disorders or rarely hematological neoplasms. Clonal eosinophilia is frequently associated with myeloid neoplasms such as: myeloproliferative neoplasms, chronic eosinophilic leukemia not otherwise specified, myeloproliferative/myelodysplastic neoplasms and, rarely, in acute myeloid leukemia or acute lymphoid leukemia/lymphoma (ALL/Lymphoma). In developing countries, the diagnosis of myeloproliferative neoplasms with eosinophilia is generally made by morphological data, flow cytometry, and molecular or genetic tests. Sometimes, the latter are not included due to the existence of barriers of access to the health system (costs, profitability or delays in administrative processes) and that diagnosing is delayed. This case report allows us to see the importance of using molecular tests as diagnostic criteria, because hematological neoplasms related to eosinophilia such as: chronic myeloid leukemia (CML), myelodysplastic/myeloproliferative syndrome of atypical chronic myeloid leukemia (MDS/MPN-AMLCa) or myeloid neoplasms with eosinophilia and rearrangements of some genes such as PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2 could show similar morphological characteristics, their treatment is different and can have a great impact on the patient's health, since a delay in introduction of imatinib therapy, decreasing median survival to less than two years, producing heart damage or a possible transformation to an acute process.
Article visits 646 | PDF visits 673
- Stella S, Massimino M, Manzella L, Pennisi MS, Tirrò E, Romano C, et al. Molecular pathogenesis and treatment perspectives for hypereosinophilia and hypereosinophilic syndromes. Int. J. Mol Sci. [Internet] 2021;22: 1–22. Disponible en: https://doi.org/10.3390/ijms22020486.
- Quentin D. A 54-Year-Old Woman with a Myeloid Neoplasm Associated with Eosinophilia and t(5;12)(q33;p13)/PDFRFB Rearrangement: Case Report and Mini-review of the Literature. Clin. Med. Rev. Case Rep. [Internet] 2017;4:1–8. Disponible en: https://doi.org/10.23937/2378-3656/1410170.
- Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. [Internet] 2016;127:2391–2405. Disponible en: https://doi.org/10.1182/blood-2016-03-643544.
- Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood. [Internet] 2011;117:5019–5032. Disponible en: https://doi.org/10.1182/blood-2011-01-293050.
- Gotlib J, CME Editor M, Tefferi A. CME Information: World Health Organization-defined eosinophilic disorders: 2014 update on diagnosis, risk stratification, and management. American Journal of Hematology. [Internet] 2014;89(3):1–13. Disponible en: https://doi.org/10.1002/ajh.00032.
- Palomo L, Meggendorfer M, Hutter S, Twardziok S, Ademà V, Fuhrmann I, et al. Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood. [Internet] 2020;1–33. Disponible en: https://doi.org/10.1182/blood.2019004229/1745901/blood.2019004229.pdf.
- Kazlauskas A. PDGFs and their receptors. Gene. [Internet] 2017 May 30;614:1-7. Disponible en: https://doi.org/10.1016/j.gene.2017.03.003.
- Restrepo-Zea JH, Silva-Maya C, Andrade-Rivas F, VH-Dover, R. Acceso a servicios de salud: análisis de barreras y estrategias en el caso de Medellín, Colombia. Rev. Gerenc. Polít. Salud. [Internet] 2014;13(27):242-265. Disponible en: http://dx.doi.org/10.11144/Javeriana.rgyps13-27.assa
- Acevedo Toro PA. Panorama del diagnóstico molecular en neoplasias hematológicas. Hech Microb. [Internet]. 2019;7(1-2):9-11. Disponible en: https://revistas.udea.edu.co/index.php/hm/article/view/339129.
- World Health Organization. Colombia Source: Globocan 2020. France. The Union for International Cancer control´s (UICC). [Internet] 2021:1–2. Disponible en: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf.
- Crónicas GE de EM. Manual de recomendaciones en neoplasias mieloproliferativas crónicas filadelfia negativas. Hernández J, editor. 3rd. Barcelona: Gemfim; 2020. 120p.
- Cornfield D, Shah U, Cross N, Bennett C, Sun G. Philadelphia chromosome-negative myeloproliferative neoplasm with a novel platelet-derived growth factor receptor-β rearrangement responsive to imatinib. Journal of Clinical Oncology. [Internet] 2012;30(9):109–111. Disponible en: https://doi.org/10.1200/JCO.2011.39.0377.
- Shomali W, Gotlib J. World Health Organization‐defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol. [Internet] 2019;94(10):1149–67. Disponible en: https://doi.org/10.1002/ajh.25617.
- Spry CJF, Davies J, Tai PC, Olsen EGJ, Oakley CM, Goodwin JF. Clinical features of fifteen patients with the hypereosinophilic syndrome. QJM: Int. J. Med. [Internet] 1983;52(1):1–22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6878618/
- Reilly JT. Class III receptor tyrosine kinases: role in leukaemogenesis. Br J Haematol. [Internet] 2002;116(4):744–57. Disponible en: https://doi.org/10.1046/j.0007-1048.2001.03294.x.
- Apperley J, Gardembas M, Melo J, Russell-Jones R, Bain B, Baxter J, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor Beta. N Engl J Med. [Internet] 2002;347:481-487. Disponible en: https://doi.org/10.1056/NEJMoa02015.
- Steer E, Cross NCP. Myeloproliferative Disorders with Translocations of Chromosome 5q31-35: Role of the Platelet-Derived Growth Factor Receptor Beta. Acta Haematol. [Internet] 2002;107:113–122. Disponible en: www.karger.com/journals/aha.
- Claesson-Welsh L. Platelet-derived growth factor receptor signals. Vol. 269, Jl of Biol Chem. [Internet] 1994;269(51):32023-6. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021925818315916?via%3Dihub.
- Clowes AW, Schwartz SM. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res. [Internet] 1985;56(1):139–45. Disponible en: https://doi.org/10.1161/01.res.56.1.139
- Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. [Internet] 2017. Disponible en: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/WHO-Classification-Of-Tumours-Of-Haematopoietic-And-Lymphoid-Tissues-2017
- Katsura Y, Suzukawa K, Nanmoku T, Nemoto N, Machino T, Obara N, et al. Myelodysplastic syndrome accompanied by basophilia and eosinophilia with t(5;12)(q31;p13). Cancer Genetics and Cytogenetics. [Internet] 2007;178: 85–88. Disponible en: https://doi.org/10.1016/j.cancergencyto.2007.05.020.
- Arefi M. Papel de la citogenética y de la genética molecular en la detección de la clonalidad en las eosinofilias. [Internet]. España: Universidad de Salamanca; 2014. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=91100.
- Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat Med. [Internet] 1996;2(5):561–6. Disponible en: https://doi.org/10.1038/nm0596-561.
- Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood. [Internet] 1997;90(12):4947–52. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006497120549604?via%3Dihub.
- Amor-Vigil A, Hernández-Miranda L, Díaz-Alonso C, Fernández-Martínez L, Ruíz-Moleón V, Garrote-Santana H. La biología molecular en la precisión diagnóstica de las leucemias. Revista Cubana de Hematología, Inmunología y Hemoterapia [Internet]. 2018;34(3). Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/882.
- Carlos J, Casas S, Roberto C, Jaimes V, Karine L, Santos M, et al. Neoplasia mieloide con eosinofilia con el reordenamieno PDGFRA con manifestaciones pulmonares y cutáneas. A propósito de un caso. Rev Col Hematol y Oncol. [Internet] 2018;5(1):79–84. Disponible en: https://revista.acho.info/index.php/acho/article/view/366/327
- Cogan E, Schandené L, Crusiaux A, Cochaux P, Velu T, Goldman M. Brief report- clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome. N. Engl. J. Med. [Internet] 1994;330(8):535–538. Disponible en: https://doi.org/10.1056/NEJM199402243300804.
- Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. [Internet] 2017;129:1–36. Disponible en: https://doi.org/10.1182/blood-2016-10-695973.
- Rothenberg M. Eosinophilia. N. Engl. J. Med. [Internet] 1998;338(22):1592–1600. Disponible en: https://doi.org/10.1056/NEJM199805283382206.
- David M, Cross NCP, Burgstaller S, Chase A, Curtis C, Dang R, et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood. [Internet] 2007;109(1):61–64. Disponible en: https://doi.org/10.1182/blood-2006-05-024828.
- Pardanani A, Ketterling RP, Li CY, Patnaik MM, Wolanskyj AP, Elliott MA, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res. [Internet] 2006;30(8):965–70. Disponible en: https://doi.org/10.1016/j.leukres.2005.11.011.