Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

RANO, más que ficción.

RANO, more than fiction.



Abrir | Descargar


Sección
Revisiones

Cómo citar
RANO, más que ficción.
Rev. colomb. hematol. oncol. [Internet]. 2013 Mar. 1 [cited 2024 Dec. 22];2(1):34-4. Disponible en: https://doi.org/10.51643/22562915.329

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Nicolás Useche
    Sonia Bermúdez
      Andrés Felipe Cardona
        Enrique Jiménez
          Fernando Hakim

            Nicolás Useche,

            Departamento de Imágenes Diagnósticas, Sección Neurorradiología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Sonia Bermúdez,

            Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Andrés Felipe Cardona,

            Departamento de Imágenes Diagnósticas, Sección Neurorradiología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Enrique Jiménez,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Fernando Hakim,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Germán Peña,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Juan Armando Mejía,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Unidad Funcional Neurooncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Gerardo Aristizábal,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia).


            Carlos Emilio Restrepo,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Carlos Bartels,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Andrés Quintero,

            Departamento de Neurocirugía, Universidad El Bosque (Bogotá, Colombia). Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Hernán Carranza,

            Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Jorge Miguel Otero,

            Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Carlos Vargas,

            Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            León Darío Ortiz,

            Departamento de Oncología, Sección Neurooncología, Instituto de Cancerología, Clínica Las Américas (Medellín, Colombia).


            Recientemente, el Grupo de Trabajo en Neurooncología RANO (Response assessment in neuro-oncology) introdujo los criterios para la evaluación de la respuesta de los tumores gliales y su implicación clínica. La creación de esta plataforma y de su primer informe representa un importante paso para precisar la evolución del tratamiento en pacientes con gliomas de alto grado, no solo en el escenario de los ensayos clínicos, sino también en la práctica rutinaria. La terapia antiangiogénica y otras nuevas modalidades de tratamiento han aumentado la incidencia de fenómenos imaginológicos como la pseudoprogresión y la pseudorrespuesta. Igualmente, los nuevos criterios de la RANO toman en cuenta parámetros clínicos como el uso de esteroides y la presencia de síntomas neurológicos. Es importante que los neurorradiólogos, oncólogos y neurooncólogos conozcan estos criterios y adquieran experiencia en su aplicación correcta. Por otra parte, es necesaria más investigación que permita incluir nuevas técnicas de imagen, como la perfusión, difusión y espectroscopia, en el futuro próximo.


            Visitas del artículo 298 | Visitas PDF 253


            1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205-16.
            2. Eisenhauer EA, Therase P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47.
            3. Levin VA, Crafts DC, Norman DM, Hoffer PB, Spire JP, Wilson CB. Criteria for evaluating patients undergoing chemotherapy for malignant brain tumors. J Neurosurg. 1977;47(3):329-35.
            4. Norman D, Enzmann DR, Levin VA, Wilson CB, Newton TH. Computed tomography in the evaluation of malignant glioma before and after therapy. Radiology. 1976;121(1):85-8.
            5. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277-80.
            6. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963-72.
            7. CBTRUS (2009). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004-2005. Source: Central Brain Tumor Registry of the United States, Hinsdale, IL. .
            8. Van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12(6):583-93.
            9. Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY, et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery. 2012;70(1):234-43.
            10. Sorensen AG, Patel S, Harmath C, Bridges S, Synnott J, Sievers A, et al. Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol. 2001;19(2):551-7.
            11. Grupo de Trabajo Sociedad Española de Neurorradiología. Criterios de respuesta de los tumores cerebrales (diciembre 2011). Disponible en: http://www.senr.org/pdf/section_4/Criterios_respuesta_Neuroon2011.pdf.
            12. Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK. Response criteria for glioma. Nat Clin Pract Oncol. 2008;5(11):634-44.
            13. Henson JW, Ulmer S, Harris GJ. Brain tumor imaging in clinical trials. ANJR Am J Neuroradiol. 2008;29(3):419-24.
            14. Van den Bent MJ, Vogelbaum MA, Wen PY, Macdonald DR, Chang SM. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s Criteria. J Clin Oncol. 2009;27(18):2905-8.
            15. Cairncross JG, Macdonald DR, Pexman JH, Ives FJ. Steroid-induced CT changes in patients with recurrent malignant glioma. Neurology. 1988;38(5):724-6.
            16. Watling CJ, Lee DH, Macdonald DR, Cairncross JG. Corticosteroid-induced magnetic resonance imaging changes in patients with recurrent malignant glioma. J Clin Oncol. 1994;12(9): 1886-9.
            17. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192-7.
            18. Pouleau HB, Sadeghi N, Balériaux D, Mélot C, De Witte O, Lefranc F. High levels of cellular proliferation predict pseudoprogression in glioblastoma patients. Int J Oncol. 2012;40(4): 923-8.
            19. Motegi H, Kamoshima Y, Terasaka S, Kobayashi H, Yamaguchi S, Tanino M, et al. IDH1 mutation as a potential novel biomarker for distinguishing pseudoprogression from true progression in patients with glioblastoma treated with temozolomide and radiotherapy. Brain Tumor Pathol 2012 Jul 3. [Epub ahead of print].
            20. Ortiz LD, Cardona AF, Fadul C, Londoño A, Becerra H, JiménezHakim E, et al. Clinical outcome of concomitant chemoradiotherapy followed by adjuvant temozolomide (TMZ) therapy for high-grade gliomas (HGG) in Colombia (RedLANO registry). J Clin Oncol. 2011;29:(suppl; abstr 2092).
            21. Gunjur A, Lau E, Taouk Y, Ryan G. Early post-treatment pseudoprogression amongst glioblastoma multiforme patients treated with radiotherapy and temozolomide: a retrospective analysis. J Med Imaging Radiat Oncol. 2011;55(6):603-10.
            22. Singh AD, Easaw JC. Does neurologic deterioration help to differentiate between pseudoprogression and true disease progression in newly diagnosed glioblastoma multiforme? Curr Oncol. 2012;19(4):e295-8.
            23. Knudsen-Baas KM, Moen G, Fluge Ø, Storstein A. Pseudoprogression in high-grade glioma. Acta Neurol Scand Suppl. 2013;(196):31-7.
            24. Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, et al. MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging. 2013;37(1):41-9.
            25. Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76(22): 1918-24.
            26. Kong DS, Kim ST, Kim EH, Lim DH, Kim WS, Suh YL, et al. Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol. 2011;32(2):382-7.
            27. Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloëguen Y, Cloughesy TF. Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep. 2013;13(5):347.
            28. Cairncross JG, Pexman JH, Rathbone MP. Post-surgical contrast enhancement mimicking residual brain tumour. Can J Neurol Sci 1985;12(1):75.
            29. Nicoletti GF, Barone F, Passanisi M, Mancuso P, Albanese V. Linear contrast enhancement at the operative site on early postoperative CT after removal of brain tumors. J Neurosurg Sci. 1994;38(2):131-5.
            30. Ekinci G, Akpinar IN, Baltacioğlu F, Erzen C, Kiliç T, Elmaci I, et al. Early-postoperative magnetic resonance imaging in glial tumors: prediction of tumor regrowth and recurrence. Eur J Radiol. 2003;45(2):99-107.
            31. Ulmer S, Spalek K, Nabavi A, Schultka S, Mehdorn HM, Kesari S, et al. Temporal changes in magnetic resonance imaging characteristics of Gliadel wafers and of the adjacent brain parenchyma. Neuro Oncol. 2012;14(4):482-90.
            32. Colen RR, Zinn PO, Hazany S, Do-Dai D, Wu JK, Yao K, et al. Magnetic resonance imaging appearance and changes on intracavitary Gliadel wafer placement: A pilot study. World J Radiol. 2011;3(11):266-72.
            33. Summary minutes of the Oncologic Drugs Advisory Committee, March 31, 2009. Washington, DC: Center for Drug Evaluation and Research, US Food and Drug Administration; 2009.
            34. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553-63.
            35. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83-95.
            36. Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25(30): 4722-9.
            37. Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27(15):2542-52.
            38. Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, et al. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol. 2009;92(2):149-55.
            39. Narayana A, Kelly P, Golfinos J, Parker E, Johnson G, Knopp E, et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg. 2009;110(1):173-80.
            40. Wick W, Stupp R, Beule AC, Bromberg J, Wick A, Ernemann U, et al. A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol. 2008;10(6):1019-24.
            41. Wick A, Dörner N, Schäfer N, Hofer S, Heiland S, Schemmer D, et al. Bevacizumab does not increase the risk of remote relapse in malignant glioma. Ann Neurol. 2011;69(3):586-92.
            42. Gruber L. Change in pattern of relapse in newly diagnosed high-grade glioma following bevacizumab therapy. ASCO 2010 (abstract 2020).
            43. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009;22(6):633-8.
            44. Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32(11):1978-85.
            45. Clarke JL, Ennis MM, Yung WK, Chang SM, Wen PY, Cloughesy TF, et al. Is surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma? Neuro Oncol. 2011;13(10):1118-24.
            46. Farace P, Giri MG, Meliadò G, Amelio D, Widesott L, Ricciardi GK, et al. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI. Br J Radiol. 2011;84(999):271-8.
            47. Jansen EP, Dewit LG, van Herk M, Bartelink H. Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol. 2000;56(2):151-6.
            48. Gállego Pérez-Larraya J, Lahutte M, Petrirena G, Reyes-Botero G, González-Aguilar A, Houillier C, et al. Response assessment in recurrent glioblastoma treated with irinotecan-bevacizumab: comparative analysis of the Macdonald, RECIST, RANO, and RECIST + F criteria. Neuro Oncol. 2012;14(5):667-73.
            49. Clarke JL, Chang SM. Neuroimaging: diagnosis and response assessment in glioblastoma. Cancer J. 2012;18(1):26-31.
            50. Pichler J, Pachinger C, Pelz M, Kleiser R. MRI assessment of relapsed glioblastoma during treatment with bevacizumab: Volumetric measurement of enhanced and FLAIR lesions for evaluation of response and progression-A pilot study. Eur J Radiol. 2013;82(5):e240-5.
            51. Radbruch A, Lutz K, Wiestler B, Bäumer P, Heiland S, Wick W, et al. Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria. Neuro Oncol. 2012;14(2):222-9.
            52. Gladwish A, Koh ES, Hoisak J, Lockwood G, Millar BA, Mason W, et al. Evaluation of early imaging response criteria in glioblastoma multiforme. Radiat Oncol. 2011;6:121.
            53. Wang MY, Cheng JL, Han YH, Li YL, Dai JP, Shi DP. Measurement of tumor size in adult glioblastoma: classical cross-sectional criteria on 2D MRI or volumetric criteria on high resolution 3D MRI? Eur J Radiol. 2012;81(9):2370-4.
            54. Hwang EJ, Cha Y, Lee AL, Yun TJ, Kim TM, Park CK, et al. Early response evaluation for recurrent high grade gliomas treated with bevacizumab: a volumetric analysis using diffusionweighted imaging. J Neurooncol. 2013 Feb 17. [Epub ahead of print].
            Sistema OJS 3.4.0.7 - Metabiblioteca |