Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

El papel de Notch, Hh y Wnt en el desarrollo del cáncer de pulmón.

The role of Notch, Hh and Wnt in lung cancer development.



Abrir | Descargar

Cómo citar

1.
Cardona AF, Reguart N. El papel de Notch, Hh y Wnt en el desarrollo del cáncer de pulmón. Rev. colomb. hematol. oncol. [Internet]. 2012 Sep. 1 [cited 2025 Dec. 5];1(3):51-62. https://doi.org/10.51643/22562915.313

Descargar cita

Citaciones


Sección
Artículos especiales

Cómo citar
1.
Cardona AF, Reguart N. El papel de Notch, Hh y Wnt en el desarrollo del cáncer de pulmón. Rev. colomb. hematol. oncol. [Internet]. 2012 Sep. 1 [cited 2025 Dec. 5];1(3):51-62. https://doi.org/10.51643/22562915.313

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Andrés Felipe Cardona
    Noemí Reguart

      Andrés Felipe Cardona,

      Clinical and Translational Oncology Group, Institute of Oncology, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


      Noemí Reguart,

      Foundation for Clinical and Applied Cancer Research (FICMAC) (Bogotá, Colombia).


      Hedgehog (Hh), Notch and Wingless-Int (Wnt) are signalling pathways highly conserved among species, essential for embryonic development and progenitor cell fates. All three of these pathways participate in lung development as well as airway epithelial repair process. But interestingly aberrant activation of these pathways is observed in a large variety of cancers, suggesting its potential contribution in the evolution and maintenance of a malignant phenotype. New evidence implicates malignant transformation of the neuroendocrine lineage with aberrant Hedgehog pathway activation, whereas Notch and Wnt signalling may be important in other airway cell types. Bearing in mind the importance of the new theory of tumor formation based on stem-cells rather than on the stochastic model of carcinogenesis, it is not surprising that there has been increasing interest in these genes directly implicated in the stem-cell renewal process. Currently drug design strategies are focus on targeting these signalling pathways and may provide therapeutic opportunities in lung cancer. This review focuses on Hh, Notch Wnt signalling pathways and gives more insight about its role in lung tumorigenesis.


      Visitas del artículo 255 | Visitas PDF 498


      Descargas

      Los datos de descarga todavía no están disponibles.
      1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108. DOI: https://doi.org/10.3322/canjclin.55.2.74
      2. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997;275(5307):1787-90. DOI: https://doi.org/10.1126/science.275.5307.1787
      3. Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sörensen N, Berthold F, et al. Deletions of AXIN1, a component of the WNT/ wingless pathway, in sporadic medulloblastomas. Cancer Res, 2001;61(19):7039-43.
      4. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275(5307):1784-7. DOI: https://doi.org/10.1126/science.275.5307.1784
      5. Liu H, Kho AT, Kohane IS, Sun Y. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development. PLoS Med. 2006;3(7):e232. DOI: https://doi.org/10.1371/journal.pmed.0030232
      6. Kitagawa H, Goto A, Niki T, Hironaka M, Nakajima J, Fukayama M. Lung adenocarcinoma associated with atypical adenomatous hyperplasia. A clinicopathological study with special reference to smoking and cancer multiplicity. Pathol Int. 2003;53(12):823-7. DOI: https://doi.org/10.1046/j.1440-1827.2003.01570.x
      7. Licchesi JD, Westra WH, Hooker CM, Machida EO, Baylin SB, Herman JG. Epigenetic alteration of Wnt pathway antagonists in progressive glandular neoplasia of the lung. Carcinogenesis. 2008;29(5):895-904. DOI: https://doi.org/10.1093/carcin/bgn017
      8. Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, et al. Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One. 2006;1:e93. DOI: https://doi.org/10.1371/journal.pone.0000093
      9. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411(6835):349-54. DOI: https://doi.org/10.1038/35077219
      10. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105-111. DOI: https://doi.org/10.1038/35102167
      11. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-7. DOI: https://doi.org/10.1038/nm0797-730
      12. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983-8. DOI: https://doi.org/10.1073/pnas.0530291100
      13. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946-51. DOI: https://doi.org/10.1158/0008-5472.CAN-05-2018
      14. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823-35. DOI: https://doi.org/10.1016/j.cell.2005.03.032
      15. Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, et al. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA. 2006;103(25):9530- 5. DOI: https://doi.org/10.1073/pnas.0510232103
      16. Ventura JJ, Tenbaum S, Perdiguero E, Huth M, Guerra C, Barbacid M, et al. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet. 2007;39(6):750-8. DOI: https://doi.org/10.1038/ng2037
      17. Yanagi S, Kishimoto H, Kawahara K, Sasaki T, Sasaki M, Nishio M, et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest. 2007;117(10):2929-40. DOI: https://doi.org/10.1172/JCI31854
      18. Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 1998;8(19):1083-6. DOI: https://doi.org/10.1016/S0960-9822(98)70446-4
      19. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512-20. DOI: https://doi.org/10.1111/j.1349-7006.2007.00550.x
      20. Winn RA, Van Scoyk M, Hammond M, Rodriguez K, Crossno JT Jr, Heasley LE, et al. Antitumorigenic effect of Wnt 7a and Fzd 9 in non-small cell lung cancer cells is mediated through ERK5-dependent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2006;281(37):26943-50. DOI: https://doi.org/10.1074/jbc.M604145200
      21. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11(8):1048-60. DOI: https://doi.org/10.1101/gad.11.8.1048
      22. Lako M, Strachan T, Bullen P, Wilson DI, Robson SC, Lindsay S. Isolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene. 1998;219(1- 2):101-10. DOI: https://doi.org/10.1016/S0378-1119(98)00393-X
      23. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996;10(1):60-9. DOI: https://doi.org/10.1101/gad.10.1.60
      24. Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectodermand mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol. 1994;162(2):402-13. DOI: https://doi.org/10.1006/dbio.1994.1097
      25. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 1998;20(1):54-7. DOI: https://doi.org/10.1038/1711
      26. Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ, et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn. 1996;206(4):379-90. DOI: https://doi.org/10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F
      27. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004;5(6):441-50. DOI: https://doi.org/10.1038/nrm1400
      28. Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G, Hogan BL. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development. 1997;124(1):53-63. DOI: https://doi.org/10.1242/dev.124.1.53
      29. Zakin LD, Mazan S, Maury M, Martin N, Guénet JL, Brûlet P. Structure and expression of Wnt13, a novel mouse Wnt2 related gene. Mech Dev. 1998;73(1):107-16. DOI: https://doi.org/10.1016/S0925-4773(98)00040-9
      30. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483-7. DOI: https://doi.org/10.1126/science.1094291
      31. Okubo T, Hogan BL. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol. 2004;3(3):11. DOI: https://doi.org/10.1186/jbiol3
      32. Dean CH, Miller LA, Smith AN, Dufort D, Lang RA, Niswander LA. Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Dev Biol. 2005;286(1):270-86. DOI: https://doi.org/10.1016/j.ydbio.2005.07.034
      33. De Langhe SP, Sala FG, Del Moral PM, Fairbanks TJ, Yamada KM, Warburton D, et al. Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol. 2005;277(2):316-31. DOI: https://doi.org/10.1016/j.ydbio.2004.09.023
      34. Esni F, Ghosh B, Biankin AV, Lin JW, Albert MA, Yu X, et al. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development. 2004;131(17):4213-24. DOI: https://doi.org/10.1242/dev.01280
      35. Hald J, Hjorth JP, German MS, Madsen OD, Serup P, Jensen J. Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev Biol. 2003;260(2):426-37. DOI: https://doi.org/10.1016/S0012-1606(03)00326-9
      36. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770-6. DOI: https://doi.org/10.1126/science.284.5415.770
      37. Itoh K, Antipova A, Ratcliffe MJ, Sokol S. Interaction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction. Mol Cell Biol. 2000;20(6):2228-38. DOI: https://doi.org/10.1128/MCB.20.6.2228-2238.2000
      38. Post LC, Ternet M, Hogan BL. Notch/Delta expression in the developing mouse lung. Mech Dev. 2000 Nov;98(1-2):95-8. DOI: https://doi.org/10.1016/S0925-4773(00)00432-9
      39. Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. Rational targeting of Notch signaling in cancer. Oncogene. 2008;27(38):5124-31. DOI: https://doi.org/10.1038/onc.2008.226
      40. Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev. 2007;17(1):52-9. DOI: https://doi.org/10.1016/j.gde.2006.12.001
      41. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530-7. DOI: https://doi.org/10.1158/0008-5472.CAN-05-1069
      42. Pinnix CC, Herlyn M. The many faces of Notch signaling in skinderived cells. Pigment Cell Res. 2007;20(6):458-65. DOI: https://doi.org/10.1111/j.1600-0749.2007.00410.x
      43. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416-21. DOI: https://doi.org/10.1038/ng1099
      44. Koch U, Radtke F. Notch and cancer: a double-edged sword. Cell Mol Life Sci. 2007;64(21):2746-62. DOI: https://doi.org/10.1007/s00018-007-7164-1
      45. Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, et al. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem. 2008;283(43):29532-44. DOI: https://doi.org/10.1074/jbc.M801565200
      46. Chen Y, De Marco MA, Graziani I, Gazdar AF, Strack PR, Miele L, et al. Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res. 2007;67(17):7954-9. DOI: https://doi.org/10.1158/0008-5472.CAN-07-1229
      47. Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzalez A, Carbone DP, et al. Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res. 2007;67(17):8051-7. DOI: https://doi.org/10.1158/0008-5472.CAN-07-1022
      48. Dang TP, Gazdar AF, Virmani AK, Sepetavec T, Hande KR, Minna JD, et al. Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst. 2000;92(16):1355-7. DOI: https://doi.org/10.1093/jnci/92.16.1355
      49. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8(9):979-86. DOI: https://doi.org/10.1038/nm754
      50. Zheng Q, Qin H, Zhang H, Li J, Hou L, Wang H, et al. Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncol Rep. 2007;17(4):847-52. DOI: https://doi.org/10.3892/or.17.4.847
      51. Dou GR, Wang YC, Hu XB, Hou LH, Wang CM, Xu JF, et al. RBPJ, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J. 2008;22(5):1606-17. DOI: https://doi.org/10.1096/fj.07-9998com
      52. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation. 2001;69(2-3):135-44. DOI: https://doi.org/10.1046/j.1432-0436.2001.690207.x
      53. Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 2005;65(19):8690-7. DOI: https://doi.org/10.1158/0008-5472.CAN-05-1208
      54. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444(7122):1032-7. DOI: https://doi.org/10.1038/nature05355
      55. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 2008;105(17):6392-7. DOI: https://doi.org/10.1073/pnas.0802047105
      56. Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99-115. DOI: https://doi.org/10.1101/gad.276304
      57. Pao W, Ladanyi M, Miller VA; Lung Cancer Oncogenome Group. Erlotinib in lung cancer. N Engl J Med. 2005;353(16):1739-41; author reply 1739-1741. DOI: https://doi.org/10.1056/NEJMc052173
      58. Einhorn LH, Bonomi P, Bunn PA Jr, Camidge DR, Carbone DP, Choy H, et al. Summary report 7th Annual Targeted Therapies of the Treatment of Lung Cancer. J Thorac Oncol. 2008;3(5):545- 55. DOI: https://doi.org/10.1097/JTO.0b013e318170627f
      59. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059-87. DOI: https://doi.org/10.1101/gad.938601
      60. Ogden SK, Ascano M Jr, Stegman MA, Robbins DJ. Regulation of Hedgehog signaling: a complex story. Biochem Pharmacol. 2004;67(5):805-14. DOI: https://doi.org/10.1016/j.bcp.2004.01.002
      61. Pepinsky RB, Rayhorn P, Day ES, Dergay A, Williams KP, Galdes A, et al. Mapping sonic hedgehog-receptor interactions by steric interference. J Biol Chem. 2000;275(15):10995-1001. DOI: https://doi.org/10.1074/jbc.275.15.10995
      62. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297(5586):1559-61. DOI: https://doi.org/10.1126/science.1073733
      63. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425(6960):851-6. DOI: https://doi.org/10.1038/nature02009
      64. Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R, et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology. 2004;145(8):3961-70. DOI: https://doi.org/10.1210/en.2004-0079
      65. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004;64(17):6071-4. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0416
      66. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422(6929):313-7. DOI: https://doi.org/10.1038/nature01493
      67. Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers. Science. 2004;304(5678):1755-9. DOI: https://doi.org/10.1126/science.1098020
      68. Toftgard R. Hedgehog signalling in cancer. Cell Mol Life Sci. 2000;57(12):1720-31. DOI: https://doi.org/10.1007/PL00000654
      69. Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, et al. Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol. 2000;278(6):L1256-63. DOI: https://doi.org/10.1152/ajplung.2000.278.6.L1256
      70. Fujita E, Khoroku Y, Urase K, Tsukahara T, Momoi MY, Kumagai H, et al. Involvement of Sonic hedgehog in the cell growth of LK-2 cells, human lung squamous carcinoma cells. Biochem Biophys Res Commun. 1997;238(2):658-64. DOI: https://doi.org/10.1006/bbrc.1997.7262
      71. Yuan Z, Goetz JA, Singh S, Ogden SK, Petty WJ, Black CC, et al. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene. 2007;26(7):1046-55. DOI: https://doi.org/10.1038/sj.onc.1209860
      72. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31(1):99-109. DOI: https://doi.org/10.1016/0092-8674(82)90409-3
      73. Yamaguchi TP, Bradley A, McMahon AP, Jones S. Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126(6):1211-23. DOI: https://doi.org/10.1242/dev.126.6.1211
      74. Weidenfeld J, Shu W, Zhang L, Millar SE, Morrisey EE. The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J Biol Chem. 2002;277(23):21061-70. DOI: https://doi.org/10.1074/jbc.M111702200
      75. Li C, Xiao J, Hormi K, Borok Z, Minoo P. Wnt5a participates in distal lung morphogenesis. Dev Biol. 2002;248(1):68-81. DOI: https://doi.org/10.1006/dbio.2002.0729
      76. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003;162(5):1495-502. DOI: https://doi.org/10.1016/S0002-9440(10)64282-4
      77. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, et al. A dualkinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438(7069):873-7. DOI: https://doi.org/10.1038/nature04185
      78. Moreno-Bueno G, Hardisson D, Sánchez C, Sarrio D, Cassia R, García-Rostán G, et al. Abnormalities of the APC/ beta-catenin pathway in endometrial cancer. Oncogene. 2002;21(52):7981-90. DOI: https://doi.org/10.1038/sj.onc.1205924
      79. Gerstein AV, Almeida TA, Zhao G, Chess E, Shih IeM, Buhler K, et al. APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer. 2002;34(1):9-16. DOI: https://doi.org/10.1002/gcc.10037
      80. Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther. 2004;3(1):36-41. DOI: https://doi.org/10.4161/cbt.3.1.561
      81. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA. 1998;95(15):8847-51. DOI: https://doi.org/10.1073/pnas.95.15.8847
      82. He B, You L, Uematsu K, Xu Z, Lee AY, Matsangou M, et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia. 2004;6(1):7-14. DOI: https://doi.org/10.1016/S1476-5586(04)80048-4
      83. You L, He B, Xu Z, Uematsu K, Mazieres J, Mikami I, et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene. 2004;23(36):6170-4. DOI: https://doi.org/10.1038/sj.onc.1207844
      84. Mazieres J, He B, You L, Xu Z, Lee AY, Mikami I, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res. 2004;64(14):4717-20. DOI: https://doi.org/10.1158/0008-5472.CAN-04-1389
      85. Kim J, You L, Xu Z, Kuchenbecker K, Raz D, He B, et al. Wnt inhibitory factor inhibits lung cancer cell growth. J Thorac Cardiovasc Surg. 2007;133(3):733-7. DOI: https://doi.org/10.1016/j.jtcvs.2006.09.053
      86. Yue W, Sun Q, Dacic S, Landreneau RJ, Siegfried JM, Yu J, et al. Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer. Carcinogenesis. 2008;29(1):84-92. DOI: https://doi.org/10.1093/carcin/bgm267
      87. You L, He B, Uematsu K, Xu Z, Mazieres J, Lee A, et al. Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res. 2004;64(10):3474-8. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0115
      88. Nakashima T, Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, et al. Wnt1 overexpression associated with tumor proliferation and a poor prognosis in non-small cell lung cancer patients. Oncol Rep. 2008;19(1):203-9. DOI: https://doi.org/10.3892/or.19.1.203
      89. Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, et al. WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA. 2003;100(18):10429-34. DOI: https://doi.org/10.1073/pnas.1734137100
      90. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene. 2003;22(46):7218- 21. DOI: https://doi.org/10.1038/sj.onc.1206817
      91. Uematsu K, Kanazawa S, You L, He B, Xu Z, Li K, et al. Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Res. 2003;63(15):4547-51.
      92. Wei Q, Zhao Y, Yang ZQ, Dong QZ, Dong XJ, Han Y, et al. Dishevelled family proteins are expressed in non-small cell lung cancer and function differentially on tumor progression. Lung Cancer. 2008;62(2):181-92. DOI: https://doi.org/10.1016/j.lungcan.2008.06.018
      93. Sunaga N, Kohno T, Kolligs FT, Fearon ER, Saito R, Yokota J. Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma. Genes Chromosom Cancer. 2001;30(3):316-21. DOI: https://doi.org/10.1002/1098-2264(2000)9999:9999<::AID-GCC1097>3.0.CO;2-9
      94. Ohgaki H, Kros JM, Okamoto Y, Gaspert A, Huang H, Kurrer MO. APC mutations are infrequent but present in human lung cancer. Cancer Lett. 2004;207(2):197-203. DOI: https://doi.org/10.1016/j.canlet.2003.10.020
      95. Kase S, Sugio K, Yamazaki K, Okamoto T, Yano T, Sugimachi K. Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res. 2000;6(12):4789-96. DOI: https://doi.org/10.1016/S0169-5002(00)80667-4
      96. Suzuki M, Shigematsu H, Nakajima T, Kubo R, Motohashi S, Sekine Y, et al. Synchronous alterations of Wnt and epidermal growth factor receptor signaling pathways through aberrant methylation and mutation in non small cell lung cancer. Clin Cancer Res. 2007;13(20):6087-92. DOI: https://doi.org/10.1158/1078-0432.CCR-07-0591
      97. Batra S, Shi Y, Kuchenbecker KM, He B, Reguart N, Mikami I, et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun. 2006;342(4):1228-32. DOI: https://doi.org/10.1016/j.bbrc.2006.02.084
      98. Lee AY, He B, You L, Dadfarmay S, Xu Z, Mazieres J, et al. Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene. 2004;23(39):6672-6. DOI: https://doi.org/10.1038/sj.onc.1207881
      99. Tsuji T, Miyazaki M, Sakaguchi M, Inoue Y, Namba MA. A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem Biophys Res Commun. 2000;268(1):20-4. DOI: https://doi.org/10.1006/bbrc.1999.2067
      100. Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. Semin Cancer Biol. 2004;14(5):357-64. DOI: https://doi.org/10.1016/j.semcancer.2004.04.015
      101. Aguayo AJ, Bray GM, Rasminsky M, Zwimpfer T, Carter D, Vidal-Sanz M. Synaptic connections made by axons regenerating in the central nervous system of adult mammals. J Exp Biol. 1990;153:199-224. DOI: https://doi.org/10.1242/jeb.153.1.199
      102. Bianchi L, Driscoll M. Heterologous expression of C. elegans ion channels in Xenopus oocytes. WormBook. 2006:1-16. DOI: https://doi.org/10.1895/wormbook.1.117.1
      103. Shan L, Aster JC, Sklar J, Sunday ME. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L500-9. DOI: https://doi.org/10.1152/ajplung.00052.2006
      104. Greenblatt DY, Vaccaro AM, Jaskula-Sztul R, Ning L, Haymart M, Kunnimalaiyaan M, et al. Valproic acid activates notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist. 2007;12(8):942-51. DOI: https://doi.org/10.1634/theoncologist.12-8-942
      105. Sriuranpong V, Borges MW, Strock CL, Nakakura EK, Watkins DN, Blaumueller CM, et al. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol Cell Biol. 2002;22(9):3129-39. DOI: https://doi.org/10.1128/MCB.22.9.3129-3139.2002
      106. Lee J, Platt KA, Censullo P, Ruiz i Altaba A. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development. 1997;124(13):2537-52. DOI: https://doi.org/10.1242/dev.124.13.2537
      107. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 2000;406(6799):1005-9. DOI: https://doi.org/10.1038/35023008
      108. Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell. 1996;87(4):661- 73. DOI: https://doi.org/10.1016/S0092-8674(00)81386-0
      109. Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Tümer Z, Tommerup N, et al. Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer. 2006;52(3):281-90. DOI: https://doi.org/10.1016/j.lungcan.2005.12.014
      110. Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL. Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development. 1999;126(18):4005-15. DOI: https://doi.org/10.1242/dev.126.18.4005
      111. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003;3(12):903-11. DOI: https://doi.org/10.1038/nrc1229
      112. Barnes EA, Kong M, Ollendorff V, Donoghue DJ. Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J. 2001;20(9):2214-23. DOI: https://doi.org/10.1093/emboj/20.9.2214
      113. Ohta M, Tateishi K, Kanai F, Watabe H, Kondo S, Guleng B, et al. p53-Independent negative regulation of p21/cyclin-de pendent kinase-interacting protein 1 by the sonic hedgehogglioma-associated oncogene 1 pathway in gastric carcinoma cells. Cancer Res. 2005;65(23):10822-9. DOI: https://doi.org/10.1158/0008-5472.CAN-05-0777
      114. Fan H, Khavari PA. Sonic hedgehog opposes epithelial cell cycle arrest. J Cell Biol. 1999;147(1):71-6. DOI: https://doi.org/10.1083/jcb.147.1.71
      115. Yoshinori A, Tobiume K. The negative regulation of p53 by hedgehog signaling. AACR. 2006. Abstract 1135-b.
      116. Olsen CL, Hsu PP, Glienke J, Rubanyi GM, Brooks AR. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer. 2004;4:43. DOI: https://doi.org/10.1186/1471-2407-4-43
      117. Kanda S, Mochizuki Y, Suematsu T, Miyata Y, Nomata K, Kanetake H. Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem. 2003;278(10):8244-9. DOI: https://doi.org/10.1074/jbc.M210635200
      118. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T. ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res. 2005;65(23):10680-5. DOI: https://doi.org/10.1158/0008-5472.CAN-05-1404
      119. Linnoila RI, Zhao B, DeMayo JL, Nelkin BD, Baylin SB, DeMayo FJ, et al. Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res. 2000;60(15):4005-9.
      120. Salon C, Moro D, Lantuejoul S, Brichon Py P, Drabkin H, Brambilla C, et al. E-cadherin-beta-catenin adhesion complex in neuroendocrine tumors of the lung: a suggested role upon local invasion and metastasis. Hum Pathol. 2004;35(9):1148-55. DOI: https://doi.org/10.1016/j.humpath.2004.04.015
      121. Pelosi G, Scarpa A, Puppa G, Veronesi G, Spaggiari L, Pasini F, et al. Alteration of the E-cadherin/beta-catenin cell adhesion system is common in pulmonary neuroendocrine tumors and is an independent predictor of lymph node metastasis in atypical carcinoids. Cancer. 2005;103(6):1154-64. DOI: https://doi.org/10.1002/cncr.20901
      Sistema OJS 3.4.0.7 - Metabiblioteca |