Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Progenitores de los tumores cerebrales.

Stem cells in brain tumors.



Abrir | Descargar


Sección
Revisiones

Cómo citar
Progenitores de los tumores cerebrales.
Rev. colomb. hematol. oncol. [Internet]. 2012 Sep. 1 [cited 2024 Dec. 26];1(3):36-50. Disponible en: https://doi.org/10.51643/22562915.312

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

León Darío Ortiz
    Andrés Felipe Cardona
      Hernán Carranza
        Henry Becerra
          Carlos Vargas

            León Darío Ortiz,

            Departamento de Oncología Clínica, Sección Neuro-oncología, Instituto de Cancerología, Clínica Las Américas (Medellín, Colombia). Investigador asociado Red Latinoamericana de Neurooncología (RedLANO).


            Andrés Felipe Cardona,

            Investigador asociado Red Latinoamericana de Neurooncología (RedLANO). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Hernán Carranza,

            Investigador asociado Red Latinoamericana de Neurooncología (RedLANO). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Henry Becerra,

            Grupo Oncología Clínica y Traslacional, Instituto de Oncología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Carlos Vargas,

            Investigador asociado Red Latinoamericana de Neurooncología (RedLANO). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Enrique Jiménez,

            Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Fernando Hakim,

            Departamento de Neurocirugía, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Nicolás Useche,

            Departamento de Imágenes Diagnósticas, Sección Neurorradiología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Sonia Bermúdez,

            Departamento de Imágenes Diagnósticas, Sección Neurorradiología, Fundación Santa Fe de Bogotá (Bogotá, Colombia).


            Jorge Otero,

            Investigador asociado Red Latinoamericana de Neurooncología (RedLANO). Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Pilar Archila,

            Departamento de Patología, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (Bogotá, Colombia).


            Silvia Serrano,

            Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Diana Torres,

            Instituto de Genética Humana, Pontificia Universidad Javeriana (Bogotá, Colombia); investigador asociado German Cancer Research Center (DKFZ).


            July Katherine Rodríguez,

            Fundación para la Investigación Clínica y Molecular Aplicada del Cáncer (FICMAC); investigador asociado ONCOLGroup.


            Orlando Ricaurte,

            Departamento de Patología, Universidad Nacional de Colombia (Bogotá, Colombia).


            Carmen Balañá,

            Departamento de Oncología Médica, Sección Neuro-oncología, Hospital Germans Trias i Pujol, Instituto Catalán de Oncología (ICO) (Barcelona, España).


            Alejandro Blanco,

            Departamento de Radioterapia, Hospital México (San José de Costa Rica, Costa Rica).


            El dogma sobre la génesis de las células es un evento insignificante en el cerebro de los mamíferos adultos, que ha influenciado nuestra percepción y la comprensión del origen y desarrollo de los tumores del sistema nervioso central. El descubrimiento de que las neuronas y la neuroglia se generan a lo largo de la vida a partir de células progenitoras proporciona nuevas posibilidades para definir la clonalidad y el comportamiento de las neoplasias cerebrales. La hipótesis detrás de este hallazgo está soportada por las modificaciones celulares y los mecanismos genéticos que controlan la neurogénesis normal y tumoral, lo que permite la identificación de nuevas estrategias terapéuticas.


            Visitas del artículo 236 | Visitas PDF 243


            1. CBTRUS 2000-2004 data. United States population estimates by 5-year age group were obtained from United States census; estimates available at http://www.census.gov.
            2. Ries LA, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, et al., editors. SEER Cancer Statistics Review, 1975-2004, National Cancer Institute, Bethesda, MD, in http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site, 2008.
            3. Ferlay J, Bray F, Pisani P, Parkin DM. Globocan 2002: Cancer Incidence, Mortality and Prevalence Worldwide, Version 2.0. IARC Cancer Base Nº 5. Lyon, IARC Press, 2004. Limited version available from: URL: http://www_depdb.iarc.fr/globocan2002.htm.
            4. Stupp R, Roila F; ESMO Guidelines Working Group. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2008;19 Suppl 2:ii83-5.
            5. Gilbert MR. Designing clinical trials for brain tumors: the next generation. Curr Oncol Rep. 2007;9(1):49-54.
            6. Buckner JC. Factors influencing survival in high grade gliomas. Semin Oncol. 2003;30(6 Suppl 19):10-4.
            7. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-96.
            8. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol. 1999;17:2572-8.
            9. Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7(10):733-6.
            10. Nam DH, Park K, Suh YL, Kim JH. Expression of VEGF and brain specific angiogenesis inhibitor-1 in glioblastoma: prognostic significance. Oncol Rep. 2004;11(4):863-9.
            11. Knizetova P, Darling JL, Bartek J. Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. J Cell Mol Med. 2008;12(1):111-25.
            12. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11.
            13. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004;51(1):1-28.
            14. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 1997;3(7):730-7.
            15. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol. 2004;44:399- 421.
            16. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223-50.
            17. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703-16.
            18. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994;13(5):1071-82.
            19. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740-4.
            20. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17(13):5046-61.
            21. Zhenju J, Lenhard R. Telomeres and telomerase in cancer stem cell. Eur J Cancer. 2006;42:1197-1203.
            22. Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, et al. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells. 2005;23(6):791-804.
            23. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396-401.
            24. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stemlike neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011-21.
            25. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60.
            26. Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 2007;67(19):8980-4. 26. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stemlike neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011-21.
            27. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67-78.
            28. Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64(20):7183-90.
            29. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425-36.
            30. Dell’Albani P. Stem cell markers in gliomas. Neurochem Res. 2008;33(12):2407-15.
            31. Gu H, Wang S, Messam CA, Yao Z. Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res. 2002;943(2):174-80.
            32. Holmin S, Almqvist P, Lendahl U, Mathiesen T. Adult nestinexpressing subependymal cells differentiate to astrocytes in response to brain injury. Eur J Neurosci. 1997;9(1):65-75.
            33. Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 1992;52(19):5334-41.
            34. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269-77.
            35. Erlandsson A, Enarsson M, Forsberg-Nilsson K. Immature neurons from CNS stem cells proliferate in response to plateletderived growth factor. J Neurosci. 2001;21(10):3483-91.
            36. Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron. 2007;53(4):503-17.
            37. Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signalling. Genes Dev. 2004;18(15):1806-11.
            38. Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron. 2001;29(1):45-55.
            39. Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem. 2008;307(1-2):101-8.
            40. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005;65(6):2353-63.
            41. Miele L. Notch signaling. Clin Can Res. 2006;12(4):1074-9.
            42. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821-8.
            43. Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci. 2006;26(25):6781-90.
            44. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Can. 2008;8(10):755-68.
            45. Garcion E, Halilagic A, Faissner A, French-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131(14):3423-32.
            46. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075-9.
            47. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69-82.
            48. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77(2):362-72.
            49. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843-8.
            50. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83-95.
            51. Stupp R, Goldbrunner R, Neyns B, Schlegel U, Clement P, Grabenbauer GG, et al. Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients (pts) with newly diagnosed glioblastoma (GBM). J Clin Oncol. 2007;25(18S):2000.
            52. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72(5):295-339.
            53. Fan X, Eberhart CG. Medulloblastoma Stem Cells. J Clin Oncol. 2008;26(17):2821-7.
            54. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31-43.
            55. Lee Y, Miller HL, Jensen P, Hernan R, Connelly M, Wetmore C, et al. A molecular fingerprint for medulloblastoma. Cancer Res. 2003;63(17):5428-37.
            56. Dahmane N, Sánchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128(24):5201-12.
            57. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. The cellular origin of Patched associated medulloblastoma. Neuro-Oncology. 2007;9:559.
            58. Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res. 2007;67(8):3871-7.
            59. Schüller U, Rowitch DH. Beta-catenin function is required for cerebellar morphogenesis. Brain Res. 2007;1140:161-9.
            60. Koch A, Hrychyk A, Hartmann W, Waha A, Mikeska T, Waha A, et al. Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int J Cancer. 2007;121(2):284-91.
            61. Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D, et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle. 2006;5(22):2666-70.
            62. Dakubo GD, Mazerolle CJ, Wallace VA. Expression of Notch and Wnt pathway components and activation of Notch signaling in meduloblastomas from heterozygous patched mice. J Neurooncol. 2006;79(3):221-7.
            63. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129(3):465-72.
            64. Wechsler-Reya R, Read TA. Medulloblastomas from patched mutant mice are propagated by a CD15(+)/CD133- neural progenitor. Neuro-Oncology. 2007;9:559.
            65. Banna GL, Pallini R, Ricci-Vitiani L, Signore M, Lombardi D, Martini M, et al. High prognostic potential of glioblastoma stem cell analysis. J Clin Oncol. 2007;25(18S):10580.
            66. Spira AI, Carducci MA. Differentiation therapy. Curr Opin Pharmacol. 2003;3(4):338-43.
            67. Massard C, Deutsch E, Soria JC. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol. 2006;17(11):1620-4.
            68. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004;51(1):1-28.
            69. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG–GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165-72.
            70. Chearwae W, Bright JJ. PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer. 2008;99(12):2044-53.
            71. Beier D, Röhrl S, Pillai DR, Schwarz S, Kunz-Schughart LA, Leukel P, et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 2008;68(14):5706-15.
            72. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105(11):4163-9.
            73. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761-5.
            74. Dresemann G, Hosius C, Lilienthal J, Schleyer E, Bogdan U, Weller M, et al. Treatment failure due to intracerebral stem celllike behavior of glioblastoma (GBM) cells: A reason for targeted maintenance therapy with imatinib (I) and hydroxyurea (H)? An analysis of study DE21 and DE40 (Ambrosia). J Clin Oncol. 2008;26:2048.
            75. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451(7176):345-9.
            76. Loges S, Butzal M, Otten J, Schweizer M, Fischer U, Bokemeyer C, et al. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Biochem Biophys Res Commun. 2007;357(4):1016-20.
            77. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 2008;22(4):436-48.
            78. Lu J, Zhang F, Zhao D, Hong L, Min J, Zhang L, et al. ATRAinhibited proliferation in glioma cells is associated with subcellular redistribution of beta-catenin via up-regulation of Axin. J Neurooncol. 2008;87(3):271-7.
            79. Spiller SE, Ditzler SH, Pullar BJ, Olson JM. Response of preclinical medulloblastoma models to combination therapy with 13- cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J Neurooncol. 2008;87(2):133-41.
            80. Sauvageot CM, Weatherbee JL, Kesari S, Winters SE, Barnes J, Dellagatta J, et al. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol. 2009;11(2):109-21.
            81. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25(10):2524-33.
            82. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361(12):1173-8.
            83. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326(5952):572-4.
            84. LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17(8):2502-11.
            85. Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN. Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J Biol Chem. 2009;284(25):16705-9.
            86. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13(1):69-80.
            87. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149(1):36-47.
            88. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522-6.
            89. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11(17):2389-401.
            Sistema OJS 3.4.0.7 - Metabiblioteca |