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Abstract

Introduction: chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment of
hematologic malignancies, establishing a new paradigm for personalized cellular immunotherapy.
Despite remarkable clinical success, its broader application remains limited by biological, logistical,
and safety-related challenges.

Methods: this review synthesizes current evidence on the molecular foundations of CAR-T cell
biology, integrating insights from preclinical studies and clinical trials. We analyze receptor design,
co-stimulatory signaling, manufacturing strategies, and emerging engineering approaches aimed at
improving efficacy and safety.

Results: advances in CAR design and manufacturing have led to multiple FDA approvals in B-cell
leukemias, lymphomas, and multiple myeloma. However, key obstacles persist, including antigen
escape, T-cell exhaustion, limited persistence, neurotoxicity, and on-target/off-tumor effects.
Emerging strategies—such as genome editing, allogeneic and in vivo CAR-T generation, transcrip-
tional and metabolic reprogramming, and synthetic biology circuits (including SynNotch, SNIPR,
and logic-gated CARs)—are demonstrating promise in overcoming these limitations. In parallel,
conformation-specific target discovery and the use of natural ligands are expanding the scope of
actionable antigens.

Discussion: collectively, these innovations are reshaping CAR-T therapy into a more modular,
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programmable, and controllable platform. By addressing resistance mechanisms and toxicity,
next-generation CAR designs aim to improve durability and safety while enabling more precise
immune activation.

Conclusion: continued integration of molecular engineering, systems biology, and synthetic immu-
nology is poised to expand the therapeutic reach of CAR-T cells beyond hematologic malignancies,
opening new opportunities in solid tumors and immune-mediated diseases.

Keywords: single-chain antibodies; cytokine release syndrome; immunotherapy; tumor microenvi-
ronment; cell- and tissue-based therapy.

Resumen

Introduccion: la terapia con células T con receptor de antigeno quimérico (CAR-T) ha revolucionado
el tratamiento de las neoplasias hematoldgicas, estableciendo un nuevo estandar de atencidon en
la inmunoterapia celular personalizada. No obstante, pese a su notable éxito clinico, su aplicacién
generalizada continda limitada por desafios logisticos, bioldgicos y de seguridad.

Métodos: en esta revision se sintetizan los fundamentos moleculares de la biologia de las células
CAR-T a partir de evidencia preclinicay clinica. Se analizan los avances en el disefio de los receptores,
la sefializacion coestimuladora y los procesos de fabricacidn, asi como los mecanismos implicados
en la resistencia terapéutica y la toxicidad.

Resultados: las mejoras iterativas en el disefio y la manufactura de CAR-T han incrementado signifi-
cativamente la eficacia y la seguridad, conduciendo a multiples aprobaciones de la FDA en leucemias
de células B, linfomas y mieloma multiple. Sin embargo, persisten limitaciones clave, incluyendo los
largos tiempos de fabricacidn, el escape antigénico, el agotamiento de las células T, la persistencia
limitada, la neurotoxicidad y la toxicidad on-target/off-tumor. Estrategias emergentes como la
edicién gendmica, la generacion de CAR-T alogénicas e in vivo, la reprogramacion transcripcional
y metabdlica, los circuitos de biologia sintética (SynNotch, SNIPR y CAR con compuertas légicas),
asi como el descubrimiento de dianas conformacionales especificas y el uso de ligandos naturales,
estan mostrando un potencial prometedor para superar estas barreras.

Discusién: en conjunto, estos avances estan transformando la terapia CAR-T en una plataforma mas
modular, programable y controlable, con mayor capacidad para abordar los mecanismos de resis-
tencia y reducir la toxicidad asociada.

Conclusién: estas innovaciones anuncian una nueva era de inmunoterapias celulares mas seguras y
versatiles, con el potencial de expandir el impacto de la ingenieria de CAR mas alla de las neoplasias
hematoldgicas, incluyendo tumores sdlidos y enfermedades inmunomediadas.

Palabras clave: anticuerpos de cadena Unica; sindrome de liberacién de citoquinas; inmunoterapia
adoptiva; microambiente tumoral; tratamiento basado en trasplante de células y tejidos.
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Key points

e Chimeric antigen receptor (CAR) engineered cellular immunotherapy offers the potential for
precise targeting and elimination of tumor cells, providing a tailored approach to cancer treat-
ment.

e Asclinical trials of CAR-T cells progress, there is increasing examination of significant adverse
effects such as central neurotoxicity, cytokine release syndrome (CRS), hematopoietic suppres-
sion, and infections. Furthermore, the efficacy of CAR-T therapies in targeting solid tumors
remains a significant challenge. Consequently, scientists are exploring alternative immuno-
therapeutic approaches, such as CAR-engineered natural killer cells (CAR-NK) and CAR-macro-
phages (CAR-M), which utilize diverse cell types, including autologous, allogeneic, xenogeneic,
and transgenic cells, to trigger distinct anti-cancer immune responses.

e T cell activation necessitates two critical signals. The first is an antigen-specific signal, which
is triggered when the T cell receptor (TCR) recognizes a specific peptide presented by the
major histocompatibility complex (MHC) on antigen-presenting cells. The second is a co-stim-
ulatory signal, typically mediated by the interaction between CD28 on T cells and its ligands,
B7.1 (CD80) or B7.2 (CD86), on antigen-presenting cells. Antigen recognition and binding are
facilitated by the two highly variable chains that make up the TCR. One fraction, ydT cells,
consists of a y chain and a & chain, while the majority of mature T cells, called af3T cells, are
made up of an a and a 3 chain. CAR holds specific advantages over TCR. Unlike the af3T cell,
which requires MHC-dependent recognition of antigens, CAR can operate independently of
MHC, targeting both protein and non-protein molecules expressed on the cell surface to acti-
vate T cell effector functions
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CAR-T therapy: advances and challenges

Introduction and molecular
fundamentals

Chimeric antigen receptor (CAR)-T cell therapy
has emerged over the past decade as one of
the most transformative approaches in cancer
treatment’. It represents the convergence
of basic immunology, genetic engineering,
and advances in cellular bioprocessing™. The
fundamental premise is to harness the natural
ability of T lymphocytes to recognize and kill
abnormal cells and enhance it by introducing
a synthetic receptor specifically designed to
target tumor-associated antigens'™.

Under physiological conditions, antitumor
immunity by T lymphocytes depends on recog-
nition of antigens through the T cell receptor
(TCR). The TCR, composed of a and B chains
associated with the CD3 complex, recognizes
peptide fragments derived from tumor proteins
presented on major histocompatibility complex
(MHC) molecules. These peptides may be
displayed by professional antigen-presenting
cells (APCs), which prime and activate T cells, or
directly by tumor cells through their own MHC
class | expression®. However, many tumors
evade this immune surveillance by downregu-
lating MHC expression, secreting immunosup-
pressive cytokines, or expressing inhibitory
ligands that block T cell activation>¢. These
mechanisms limit the effectiveness of natural
immune responses and provide the rationale
for alternative strategies.

Chimeric antigen receptors were designed to
overcome these barriers. Their architecture
usually integrates an antibody-derived single-
chain variable fragment (scFv) with the intra-
cellular signaling domains of T lymphocytes’.
This structure combines the antigen-recogni-
tion specificity of antibodies with the activation
machinery of T cells*>57. A CAR typically consists
of: a) an extracellular antigen-binding domain,
most oftenan scFv; b)ahinge/spacer that modu-

lates reach and synapse geometry; ¢) a trans-
membrane domain that anchors the receptor;
and d) an intracellular domain containing
CD3(, which initiates TCR-like signaling. More
advanced CAR designs incorporate co-stimula-
tory domains derived from molecules such as
CD28 or 4-1BB, which reinforce expansion and
persistence of the engineered cells"*®. Hinge
length and composition (e.g., IgG1 CH2-CH3 vs.
CD8a hinges) and the choice of transmembrane
segment (CD28 vs. CD8a) can significantly influ-
ence antigen access, tonic signaling, and sensi-
tivity to antigen density, key determinants of
efficacy and toxicity?®.

The design of CARs has evolved through
multiple “generations”. First-generation CARs
contained only the CD3( chain, resulting in
incomplete activation and limited persistence in
vivo. Second-generation CARs, which form the
basis of most currently approved therapies, add
a single co-stimulatory domain (CD28 or 4-1BB).
Third-generation CARs combine two co-stim-
ulatory domains to balance expansion and
persistence; however, some constructs exhibit
excessive tonic signaling if not finely tuned.
Fourth-generation CARs, also called TRUCKSs (T
cells redirected for universal cytokine killing)
or “armored CARs”, encode inducible payloads
(e.g., IL-12, IL-18, IL-7/CCL19) that remodel the
tumor microenvironment, recruit host immu-
nity, and potentially sustain CAR-T fitness'.
A fifth-generation CAR has recently been
proposed, integrating three synergistic signals:
TCR/CD3{ activation, CD28 costimulation, and
cytokine-mediated JAK-STAT3/5 signaling'.

At the molecular level, CAR activation assem-
bles a signaling complex reminiscent of the
physiological immune synapse. Lck-mediated
phosphorylation of CD3( ITAMs triggers ZAP-70
recruitment and downstream MAPK/NF-kB/
NFAT cascades. Co-stimulatory domains shape
this signaling “tone”, CD28 drives brisk effector
differentiation and rapid early expansion, while
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4-1BB enriches oxidative phosphorylation and
mitochondrial biogenesis, often translating
into greater long-term persistence>. However,
chronic signaling in the absence of appro-
priate rest can induce epigenetic fixation of an
exhausted state, with upregulation of NR4A/
TOX programs and diminished cytotoxicity>.

The clinical impact of these innovations is unde-
niable. From the first reports in the 1990s to the
present day, CAR-T therapies have dramatically
altered the prognosis of diseases once consid-
ered untreatable, such as relapsed/refrac-
tory acute lymphoblastic leukemia and diffuse
large B-cell lymphoma*®"™. More recently,
success has extended to multiple myeloma
with the approval of ciltacabtagene autoleucel
(cilta-cel)” and even to select solid tumors such
as synovial sarcoma'. These advances reflect
not only the power of technology but also the
speed at which laboratory discoveries can be
translated into clinical practice.

In this narrative literature review, we examine
the basic molecular foundations of CAR-T
therapy, which integrates the antibody-like
specificity of engineered receptors with the
cytotoxic capacity of T lymphocytes. This
strategy has overcome several intrinsic limita-
tions of the physiological TCR; however, major
challenges remain, particularly regarding safety,
efficacy in solid tumors, delayed manufacturing,
limited persistence and expansion, and the long-
term durability of responses. These challenges,
explored in the following sections, represent
the current focus of research and will shape the
future of personalized cellular therapy.

CAR-T cell therapy: current landscape
and FDA approvals

Chimeric antigen receptor T cells (CAR-T cells)
are autologous or, in investigational settings,

allogeneic T lymphocytes that have been genet-
ically modified to express synthetic receptors
designed to target specific tumor-associated
antigens. Unlike the physiological TCR, which
requires peptide presentation on MHC mole-
cules, CARs recognize surface antigens in an
MHC-independent manner. This property allows
CAR-T therapy to circumvent one of the main
mechanisms of tumor immune evasion: loss or
downregulation of MHC expression3.

The process of generating a CAR-T product
begins with leukapheresis to collect the
patient’s peripheral blood mononuclear cells.
T cells are then isolated and genetically engi-
neered ex vivo using viral vectors (such as
lentivirus, retrovirus, or Adeno-associated virus
[AAV]) or, more recently, non-viral platforms
like transposons and CRISPR-based approaches.
These modified cells are expanded in culture
under conditions that promote viability and
functionality, cryopreserved, and ultimately
reinfused into the patient following lymphode-
pleting chemotherapy. Between engineering
and infusion, quality-control assays (vector
copy number, identity/purity, sterility, repli-
cation-competent virus, potency) and release
criteria ensure product consistency and safety™®.
The infusion is designed to establish a popula-
tion of tumor-specific effector cells capable of
expanding in vivo and mediating durable anti-
tumor responses.

CAR-T therapies have been under investiga-
tion during the last 30 years>®. After decades
of refinement, the U.S. Food and Drug Admin-
istration (FDA) granted its first approval in
2017 for tisagenlecleucel (Kymriah), targeting
CD19 in pediatric and young adult patients with
relapsed orrefractory B-cell acute lymphoblastic
leukemia. Thislandmark approval was followed
by axicabtagene ciloleucel (Yescarta) for adult
patients with diffuse large B-cell lymphoma?,
and subsequently lisocabtagene maraleucel
(Breyanzi)® and brexucabtagene autoleucel
(Tecartus) for mantle cell lymphoma". Across
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these products, differences in co-stimulation
(CD28 vs 4-1BB), vector systems, manufacturing
methods, and strategies contribute to distinct
expansion kinetics, toxicity profiles, and dura-
bilitys.

The landscape of approvals has continued to
expand. In 2021, idecabtagene vicleucel (ide-
cel, Abecma) became the first CAR-T product
approved for relapsed or refractory multiple
myeloma* by targeting B-cell maturation
antigen (BCMA). This was followed by cilta-
cabtagene autoleucel (cilta-cel, Carvykti) in
202232, which demonstrated very high overall
response rates and depth of remission in heavily
pretreated myeloma patients. In 2024, afami-
tresgene autoleucel (Tecelra) became the first
CAR-T product approved outside hematologic
malignancies, specifically for advanced synovial
sarcoma™. Collectively, as of early 2025, seven
CAR-T therapies have been approved by the
FDA, with dozens more under clinical evaluation
for both hematologic and solid tumors.

Despite these successes, all currently approved
CAR-T products are autologous. This approach
ensures immunologic compatibility but intro-
duces challenges such as variability in product
quality, lengthy manufacturing times (often
three to four weeks), and limited access for
patients with rapidly progressing disease®.
These constraints have fueled interest in
“off-the-shelf” allogeneic CAR-T therapies
derived from healthy donors, which may allow
for faster administration and broader accessi-

bility. Early-phase trials are actively exploring
this approach, though issues such as graft-
versus-host disease (GvHD), host-versus-graft
rejection, and host immune clearance remain
significant obstacles’. Off-the-shelf natural
killer (CAR-NK) products are also emerging,
with the advantage of minimal GvHD risk and
batch manufacturing potential, making them
an attractive parallel path to broaden access®.

The rapid trajectory of CAR-T approvals reflects
both the promise and the complexity of cellular
immunotherapy. Each product has contributed
unique insights into efficacy, toxicity, and dura-
bility, shaping the field’s understanding of how
CAR design and manufacturing processes influ-
ence clinical outcomes. However, the approvals
also underscores that CAR-T therapy is not a
uniform solution; rather, it is a platform that
continues to evolve in response to new chal-
lenges, including antigen escape, T cell exhaus-
tion, and safety-related toxicities.

Current challenges of CAR-T Therapy,
and emerging perspectives

Although CAR-T therapy has transformed
outcomes for many hematologic malignan-
cies, its widespread implementation faces
major limitations. These challenges span from
logistical barriers in manufacturing to biolog-
ical hurdles such as antigen escape and T-cell
exhaustion (Figure 1).
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Figure 1.
Barriers in manufacturing CAR-T cells.
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The generation of autologous CAR-T products
is a complex, multi-step process that requires
leukapheresis, T-cell activation, genetic modi-
fication, and ex vivo expansion before rein-
fusion. This procedure typically takes two
to four weeks in specialized GMP facilities, a
time frame that can be prohibitive for patients
with rapidly progressing disease®. In addition,
manufacturing success depends on the quality
and quantity of T cells collected. Patients who
are heavily pretreated or lymphopenic often
yield poor collections, further delaying or
precluding treatment. Bridging therapy (e.g.,
steroids, targeted agents, localized radiation) is
frequently required, adding clinical complexity
and risk of immunosuppression that may blunt
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Thelogisticalchallengesextendbeyondthelabo-
ratory. CAR-T therapy requires highly special-
ized infrastructure, trained personnel, and
coordination across collection centers, manu-
facturing facilities, and infusion sites. These
demands restrict access to academic medical
centers and limit treatment availability in many
regions worldwide®. Real-world data indicate
that time-to-infusion and manufacturing attri-
tion (e.g., out-of-spec product, disease progres-
sion during the wait) are substantial barriers
to equitable access, particularly in community
settings®. To address these limitations, several
strategies are being pursued. One is the devel-
opment of “off-the-shelf” allogeneic CAR-T cells
derived from healthy donors, which could be

REVISTA COLOMBIANA DE HEMATOLOGIA Y ONCOLOGIA




CAR-T therapy: advances and challenges

manufactured in bulk and stored for on-demand
use®. Genome editing (e.g., TRAC knockout,
B2-microglobulin  knockout, CD52 knockout,
etc.) can minimize alloreactivity and reduce host
rejection, while safety features (e.g., suicide
switches) mitigate risks>*-2%. In parallel, off-the-
shelf CAR-NK cells are being developed; NK cells
do not cause GvHD and are naturally suited for
allogeneic application, enabling batch produc-
tion, cryopreservation, and immediate use?®.
Early-phase studies have shown that CAR-NK
products can be safely infused with low rates of
cytokine release syndrome (CRS) and neurotox-
icity, and they may be combined with cytokine
support (e.g., membrane-bound IL-15) or anti-
body therapy for enhanced persistence 93,

An even more radical approach involves in vivo
CAR-T generation, where nanoparticles or viral
vectors deliver CAR constructs directly into
T cells inside the patient. Lymphodepleting
conditioning regimens are incompatible with
this therapeutic approach, as the presence of
pre-existing immune cells is required for effi-
cacy. Some vectors are engineered to enhance
cellular uptake, improve target specificity,
or modulate the function of the engineered
immune cells. In contrast to lentiviral vectors,
CAR mRNA constructs are designed to confer
only transient expression and activity 3'.

Recent preclinical studies with the evolved AAV
capsid Ark313 demonstrated highly efficient in
vivo transduction and CRISPR-based editing of
circulating and tissue-resident T cells, including
targetedintegrationintothe TRAClocusthrough
homology-directed repair (HDR) and homolo-
gy-independent targeted integration (HITI)®.
In these models, T cells could be programmed
in vivo to express therapeutic CARs, bypassing
ex vivo manipulation and collapsing vein-to-vein
times from weeks to a single infusion3'. Comple-
mentary clinical-stage strategies, including

enveloped delivery vehicles that engineer
human T cells in vivo are being evaluated and
suggest feasibility and rapid kinetics. Hamilton
et al., unlike to traditional vectors such as
adeno-associated viruses, which depend on
naturally evolved capsid tropisms for cargo
delivery, Cas9-packaging enveloped delivery
vehicles (Cas9-EDVs) utilize defined antibody-
antigen interactions to achieve transient and
selective transfer of genome-editing compo-
nents to specific cell types. Antibody-guided
Cas9-EDVs preferentially mediate genome
editing in target cells while minimizing effects
on bystander cells in mixed populations, both ex
vivo and in vivo. Through multiplexed targeting
of human T cells, Cas9-EDVs enable the in vivo
generation of genome-edited chimeric antigen
receptor T cells in humanized mice, repre-
senting a programmable and versatile delivery
platform with broad therapeutic potential 3.
More recently Xu et al., reported 4 patients with
diagnosis of multiple myeloma, were treated
with a BCMA CAR-T (ESO-To1), a nanobody-di-
rected, immune-shielded lentiviral vector
designed for in vivo T-cell engineering, incorpo-
rating a humanized anti-BCMA single-domain
antibody CAR. To overcome the broad tropism
characteristic of lentiviral vectors, key residues
in the vesicular stomatitis virus glycoprotein G
were mutated. The viral envelope was further
engineered to overexpress CD47, a well-known
“Don’t eat me” molecule, thereby reducing
clearance by the mononuclear phagocytic
system, and to display an anti-T-cell receptor
nanobody for selective T-cell targeting. More-
over, major histocompatibility complex class |
molecules were deleted to minimize immuno-
genicity?* Those in vivo approaches would allow
a more widely access to patients, minimizing
time to transduced T-cels, without the need of
complex infrastructure for CAR-T cell manufac-
turing since it could be centralized to the facili-
ties which provide the delivery vehicles as “off
the shelf” therapy.
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CAR-T Cell Exhaustion

A major barrier to long-term efficacy is the
development of T-cell exhaustion, a dysfunc-
tional state characterized by reduced prolif-
eration, impaired cytokine secretion, and loss
of cytotoxicity. Exhaustion can arise from
chronic antigen stimulation, tonic signaling
from the CAR itself, or exposure to inhibitory
ligands in the tumor microenvironment3. Even
strong ligands in scFv-based CAR-T cells, when
exhibiting excessively high affinity, have been
described as a cause of exhaustion through
antigen-independent  aggregation®3¢.  This
finding has led to a growing focus on optimizing
ligand affinity to achieve potent antigen binding
without inducing tonic signaling and subse-
quent exhaustion®. Epigenetically, exhausted
CAR-T cells acquire stable chromatin landscapes
and transcriptional programs dominated by
the NR4A and TOX families, which are difficult
to reverse once established¥. Functionally,
exhausted T cells lose robust effector activity,
express multiple inhibitory receptors, and
display an altered transcriptional program, ulti-
mately leading to inefficient control of tumors3.

Differences in co-stimulatory domains also
affect exhaustion profiles. CAR-T cells with
CD28 domains expand rapidly but often
decline in persistence, whereas those with
4-1BB domains show slower proliferation but
improved long-term persistence and longer-
term survival, and exerted enhanced anti-
tumor effects at lower infusion doses?*®. CD28-
based CARs once expanded, differentiated into
effector memory cells, and had increased glyco-
lytic metabolism-features related to PISK/AKT/
Glycolytic pathways, associated with robust
and rapid expansion but short-lived responses
and reduced in vivo persistence’®4, 4-1BB,
in contrast, enhances NF-kB signaling, espe-
cially the non-canonical pathway, which is
critical for survival and sustained expansion?.
Multiple preclinical and clinical studies show

4-1BB CAR-Ts cells maintain central memory
phenotypes and avoid exhaustion compared
to CD28 counterparts*. Sustained co-stimula-
tory signaling, however, can paradoxically drive
exhaustion if not properly balanced*. Beyond
co-stimulation, the antigen context matters;
low antigen density and imperfect synapse
geometry can trigger sub-threshold chronic

signaling, nudging CAR-T cells toward dysfunc-
tion35:39:43—46.

While CD28-based CAR-T cells exhibit rapid
activation, expansion, and potent effector
function, their strong and sustained signaling
can accelerate exhaustion, particularly due
to overlapping CD28 and CD3( pathways and
structural constraints inherent to second-gen-
eration CARs*. To overcome this, Feucht et
al. engineered a series of CARs with calibrated
activation potential by selectively mutating
the immunoreceptor tyrosine-based acti-
vation motifs (ITAMs) within CD3{. Among
these, the 1XX design (retaining only the most
membrane-proximal ITAM) proved superior,
promoting balanced effector and memory
differentiation, reduced exhaustion, and
enhanced persistence compared to the conven-
tional 1928 CAR®. This study demonstrated
that tuning CAR signaling strength at the ITAM
level can optimize therapeutic efficacy by
minimizing tonic activation while maintaining
robust anti-tumor activity, thereby redefining
the design principles of CD28-based CAR archi-
tecture.

Mechanistic and engineering strategies to
prevent or reverse CAR-T exhaustion include:
a) enforcing transcription factors such as c-Jun
expression to counteract AP-1 imbalance and
preserve effector function, including in solid
tumor models**495°; b) disrupting NR4A or
TOX programs to sustain functionality’>'5%; c)
combining with checkpoint inhibitors (anti-
PD-1, anti-LAG-3) to relieve extrinsic inhibitory
signaling>** or manipulation on the TGF-b which
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is highly expressed in the tumor microenviron-
ment, attenuating the immune response by
suppressing T cell activation and proliferation.
TGF-b signaling blockade have demonstrated
enhanced antitumor function of CAR T cells
through the knockdown of TGFBR®; d) meta-
bolic reprogramming to enhance mitochondrial
mass, spare respiratory capacity, and oxida-
tive phosphorylation®. TGF-b-mediated mTOR
inhibition preserves the cellular metabolism
of precursors of exhausted T cells, which both
limits and sustains long-term T cell responses®*,
and e) transient pharmacologic “resting” with
kinase inhibitors such as Dasatinib to reduce
tonic signaling during manufacturing or early
post-infusions7-59,

Emerging evidence suggests that naturally
occurring T-cell mutations enhancing proximal
signaling and cellular fitness can be harnessed
to improve engineered T-cell therapies without
exacerbating exhaustion, highlighting the
potential of genotype-informed donor selec-
tion or targeted editing. A notable example
is the CARD11-PIK3R3 gene fusion identified
in CD4* cutaneous T-cell lymphoma, which
augments  CARD11-BCL10-MALT1  complex
signaling and enhances the anti-tumor efficacy
of therapeutic T cells in several immunother-
apy-refractory models in an antigen-depen-
dent manner. Importantly, CARD11-PIK3R3-
expressing cells were monitored for up to 418
days post-transfer without signs of malignant
transformation, underscoring the potential
safety of this approach. Garcia and Daniels et
al., demonstrated that leveraging naturally
evolved T-cell mutations represents a prom-
ising strategy to explore the upper boundaries
of T-cell biology and translate evolutionary
adaptations from malignant contexts into
next-generation cellular therapies, addressing
key challenges such as limited proliferation and
exhaustion®.

On-Target | Off-Tumor toxicity and neurotox-
icity

One of the inherent risks of CAR-T therapy is its
inability to distinguish malignant from normal
cells if both express the targeted antigen. This
‘“on-target, off-tumor” recognition can lead
to destruction of healthy tissues, sometimes
with severe or life-threatening consequences®'.
For example, targeting antigens such as HER2
or GD2 in solid tumors has caused toxicity in
normal tissues expressing low levels of these®*
%, Even in hematologic cancers, some targets
such as CD19 or BCMA are also expressed on
normal B-lineage cells, leading to predict-
able but clinically significant effects like B-cell
aplasia and hypogammaglobulinemia®-°. While
B-cell aplasia is managed with immunoglobulin
replacement and antimicrobial prophylaxis®®®9,
other antigens (e.g., CD123 in certain contexts)
have produced intolerable and sometimes fatal
toxicitieswhentargeted without additional safe-
guards®7°7', A related and clinically prominent
adverse effect in current FDA-approved CAR-Ts
is neurotoxicity (either for CD19 or BCMA), also
referred to as immune effector cell-associated
neurotoxicity syndrome (ICANS). ICANS can
occur early or in a delayed fashion and mani-
fests such as encephalopathy, aphasia, tremors,
seizures, or cerebral edema. Some mechanisms
likely include endothelial activation, blood-
brain barrier disruption, since Single-cell RNA
sequencing analysis shows that CD19, primarily
considered as a B cell-specific surface antigen, is
expressedinhumanbrainmuralcellsthatare crit-
ical for blood-brain-barrier integrity, suggesting
that this cell population may contribute to the
neurotoxicity of CD19-directed immunotherapy
including CAR-T, and high cytokine flux rather
than direct CAR infiltration alone. Risk factors
include high disease burden, brisk expansion/
peak CAR-T levels, and severe CRS. Manage-
ment centers on supportive care, corticoste-
roids for moderate-severe ICANS, and IL-6
pathway blockade primarily for CRS. Delayed

Rev. Colomb. Hematol. Oncol 2026; 13 (1-Supl): 198-223 2 0 7




Patino-Escobar.

neurotoxicities, including movement disorders
with some BCMA CAR-Ts, have been described
and may reflect off-tumor interactions in neural
tissue or sustained inflammatory injury?>7.

A major clinically significant adverse event
associated with current FDA-approved CAR-T
therapies (targeting either CD19 or BCMA)
is neurotoxicity, commonly termed immune
effectorcell-associated neurotoxicity syndrome
(ICANS)”. ICANS can arise early or in a delayed
manner and is characterized by encephalopathy,
aphasia, tremor, seizures, and, in severe
cases, cerebral edema’®*”. Proposed mecha-
nisms include endothelial activation and blood-
brain barrier (BBB) disruption, as supported
by single-cell RNA sequencing studies showing
that CD19, traditionally viewed as a B cell-
specific antigen, is also expressed in human
brain mural cells (a population essential for
BBB integrity) implicating these cells in the
neurotoxicity observed with CD19-directed
immunotherapies, including CAR-T cells?+. Addi-
tionally, a high cytokine flux, rather than direct
CAR-T cell infiltration into the CNS, appears to
contribute substantially to neurotoxicity>®7>7.
Identified risk factors include high tumor
burden, rapid CAR-T expansion, and the pres-
ence of severe cytokine release syndrome
(CRS)%. Management relies on supportive care,
with corticosteroids indicated for moderate to
severe ICANS and IL-6 pathway blockade used
primarily for concurrent CRS*®7%.  Further-
more, delayed neurotoxicities, such as move-
ment disorders reported with some BCMA-
directed CAR-Ts, have been documented and
may reflect off-tumor interactions within neural
tissue or persistent inflammatory injury and
its management is less clear, with description
intrathecal methotrexate-based therapy, intra-
venous (IV) cyclophosphamide, high-dose IVIG
>1g/kg and dopamine agonists®"873,

New strategies targeting tumor-specific anti-
gens are needed to improve efficacy and over-

come issues like antigen escape and tumor
resistance. Current approaches used for target
discovery include bulk transcriptome, single-
cell RNA sequencing (scRNAseq), cell surface
proteomics, and antibody-based proteomics?.
These methods have successfully identified
new therapeutic targets, aiding in the develop-
ment of new therapies and advancing disease
biology research. Additionally, artificial intel-
ligence and machine learning are increasingly
used to analyze large datasets from these tech-
niques, further enhancing target discovery?. A
recent study introduced cross-linked peptide
proteomics as a powerful approach to iden-
tify conformational differences in proteins
shared between tumors and normal tissues.
Using this method, Mandal et al. demon-
strated that Integrin f2 (ITGB2) (an integrin
broadly expressed in normal hematopoietic and
non-hematopoietic tissues) adopts a distinct
open conformation in acute myeloid leukemia
(AML) cells compared to its closed state in
healthy cells. Through phage display screening,
the authors identified antibodies selectively
recognizing the tumor-specific epitope exposed
in the open ITGB2 conformation. Incorporating
one of these antibodies as the scFv domain of
a CAR-T construct yielded potent and selective
antitumor activity in preclinical AML models,
including humanized mice, without evidence
of toxicity in normal tissues. This work high-
lights a promising strategy for expanding the
repertoire of safe immunotherapy targets by
exploiting conformation-specific epitopes on
otherwise ubiquitously expressed proteins?’.

Other mechanistic strategies to mitigate
on-target/off-tumor effects include tuning CAR
affinity to preferentially bind high-density anti-
gens on tumor cells, designing dual-antigen
“logic gate” CARs (AND/NOT circuits)’®79, or
employing inducible CARs that can be phar-
macologically regulated or CAR T-cells that are
responsive to a hypoxic environment, a hallmark
of certain tumors®. Synthetic biology platforms
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such as SynNotch receptors add a staged-acti-
vation layer: sensing Antigen A induces a tran-
scription factor to express CAR against Antigen
B, confining cytotoxicity to sites where both
cues co-localize® . More recently, in a similar
fashion, domains involved in regulated intram-
embrane proteolysis and showed that system-
atic modular engineering can generate a class
of receptors that we call synthetic intramem-
brane proteolysis receptors (SNIPRs) that have
tunable sensing and transcriptional response
abilities®. Those synthetic T cells can be custom-
ized to deliver cytokines, antibodies, bi-specific
antibodies in response to antigens in a very
precise and localized way?"3. SNIPER and other
multi-input circuits integrate positive and nega-
tive antigens, anatomical promoters, or hypox-
ia-responsive elements to sharpen specificity
and reduce collateral toxicity®"79-%2,

Antigen escape

Even when CAR-T cells successfully eliminate
tumor cells initially, relapse may occur due to
antigen escape. Mechanisms include downreg-
ulation of the targeted antigen, splice variants
that eliminate the epitope, lineage switching,
or selective outgrowth of antigen-negative
clones®®. Antigen density thresholds are
crucial: subthreshold expression can sustain
CAR-T engagement insufficient to kill, yet suffi-
cient to chronically stimulate and exhaust the
product®.

In multiple myeloma, BCMA loss is now recog-
nized as a significant resistance mechanism.
Large cohort studies show that monoallelic
BCMA deletions are frequent at baseline and
often co-occur with high-risk events such as
TP53 deletions, predisposing patients to bial-
lelic BCMA loss under therapeutic pressure®®,
Clinical observations confirm that relapses after
BCMA CAR-T can occur via genetic deletions,
promoter methylation, or altered trafficking
leading to diminished surface expression®+%.

To overcome this, multi-antigen targeting is
being pursued. CAR-T cells have been engi-
neered to recognize BCMA and GPRC5D, or
CD19 and CD22 in B-cell malignancies, reducing
the likelihood of tumor escape®®9'. Phase
1 studies of GPRC5D-targeted CAR-T cells
(MCARH109) demonstrated robust activity,
including responses in patients previously
treated with BCMA therapies, validating
the antigen as an effective complementary
target®”. Tandem CARs and bispecific CARs
increase the antigen threshold for escape even
in solid tumor models®9%, while sequential/
conditional antigen targeting via SynNotch-
SNIPER and switch-based CARs allows dynamic
returning as tumors evolve®-39%,

Secondary malignancies

The possibility of therapy-related secondary
cancers, particularly T-cell lymphomas arising
after CAR-T treatment, has gained attention.
In March 2024, the FDA reported 33 cases of
secondary T-cell ymphomas among more than
30,000 treated patients, corresponding to
an incidence of <1%%. While this risk appears
low compared to the survival benefit of CAR-T
therapy, it underscores the importance of long-
term surveillance and careful vector design to
minimize insertional mutagenesis and raises
concern about the use of CAR-T in non-malig-
nant diseases such as autoimmune diseases,
which is an area of rapid research growing®:%,

Mechanistically, case reports have linked
CAR vector integration near oncogenes such
as TP53 with clonal T-cell transformation,
supporting insertional mutagenesis as a plau-
sible contributor in rare cases®. In a different
case, Whole-genome sequencing identi-
fied integration of the CAR vector within intron
7 of the TIA1 gene, accompanied by a loss of
TIA1 protein expression confirmed by immuno-
histochemistry. This finding represents at least
the second instance of CAR insertion involving
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a known or potential tumor suppressor locus.
Moreover, heterozygous truncating variants
in TET2 and EZH2 (absent in the pre-CAR-T
samples) were detected. These alterations,
often associated with clonal hematopoiesis
and T-cell ymphomagenesis, may have contrib-
uted to the observed malignant transforma-
tion. Unlike prior reports showing biallelic TET2
inactivation as a driver of T-cell proliferation
and infiltration, the current case involved only
a single-allele (heterozygous) mutation™®.

To reduce this risk, research is advancing
in non-integrating vectors (e.g., mMRNA,
episomes)andin genome-editing strategies that
insert CARs into safe-harbor loci such as T-Cell
receptor a constant (TRAC) locus™2. TRAC
knock-in CAR-Ts generated by CRISPR-Cas9
not only show uniform CAR expression under
the endogenous TCR promoter, reduced tonic
signaling, improved phenotype/persistence,
but also enhances T-cell potency, with edited
cells vastly outperforming conventionally
generated CAR T cells™>. Coupling site-spe-
cific integration with suicide switches (e.g., iC9)
adds a rapid pharmacologic off switch for rare
malignant transformation or severe toxicity™+.

Persistence and expansion

Durable remission depends on the ability of
CAR-T cells to persist long-term and maintain
functional activity. However, persistence is vari-
able across patients and products and CAR-T
generations. Factors influencing persistence
include co-stimulatory domain selection, manu-
facturing conditions (activation strength, cyto-
kine milieu), memory subset composition,
antigen burden/kinetics, and hostile tumor
microenvironment"3. Trafficking and tissue resi-
dency also matter, poor penetration into priv-
ileged sites (e.g., CNS, hypoxic cores) can limit
sustained control'®.

Products enriched in T memory stem cells

(CD45RA+ CCR7+ (CD62L+) show superior
expansion and long-term control™®'7, Cytokines
such as IL-7 and IL-15 support this phenotype,
while fourth-generation TRUCKs engineered
to secrete IL-7, IL-15, or IL-21 aim to enhance
survival and expansion in vivo™3. Nano-CARs,
built with nanobody (VHH) scaffolds instead
of scFvs, offer smaller, stable, less immuno-
genic binders capable of targeting recessed
epitopes and potentially lowering tonic
signaling'®". Natural Ligand-based CARs, such
as APRIL-CARs that co-target BCMA/TACI™,
and CD27-based constructs that leverage phys-
iologic receptor-ligand biology, are being
explored to reduce anti-idiotype responses and
improve proliferation™. In contrast, several
conventional scFv-based CARs utilize murine-
derived antibody fragments, which can
elicit immunogenicity and the formation
of anti-CAR antibodies, though the precise
impact of these responses on long-term
CAR-T persistence remains unclear'. By lever-
aging endogenous ligand-receptor biology,
natural ligand-based CARs may mitigate these
immunogenicity concerns while preserving
physiological ~ binding characteristics. In
preclinical and early translational work, CD27-
based anti-CD70 CARs have shown striking in
vivo proliferative advantages, on the order
of >80-fold expansion compared with some
control designs, while maintaining potent
activity against myeloma models™. Another
example of a ligand-based CAR design is
the CCL27-CAR-T, which targets CCR10 and
demonstrates preclinical efficacy comparable
to the best-in-class myeloma CAR-T, ciltacabta-
gene autoleucel (cilta-cel)"+"s.

To tackle safer, smarter control of CAR-T activity,
persistence and expansion. Chen et al. develop a
CRISPR knock-in strategy that “rewires” endog-
enous, tumor-activated promoters (notably
NR4A2 and RGS16) to drive payloads like IL-12
or IL-2 only where CAR-T cells encounter tumor
cues, boosting efficacy and survival in mouse
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models while avoiding peripheral toxicity;
the approach outperforms a synthetic NFAT
promoter and is compatible with clinical-style
manufacturing of human CAR-T cells™. In
parallel, Edelstein et al. convert natural cytokine
receptors into orthogonal MESA biosensors
(NatE MESA) that sense soluble TME signals
(e.g., VEGF, IL-10) and trigger user-defined
transcriptional programs, including logic-gated
circuits that can conditionally support CAR-T
function, offering a modular way to couple envi-
ronmental inputs to precise genetic outputs in
engineered T cells'.

Conclusions

CAR-T cell therapy has rapidly progressed froma
conceptual innovationin the 1990s to a transfor-
mative treatment modality that is reshaping the
landscape of cancer care. Its success in hemato-
logic malignancies such as B-cell acute lympho-
blastic leukemia, diffuse large B-cell lymphoma,
mantle cell lymphoma, and multiple myeloma
demonstrates the power of combining the
antibody-like specificity of synthetic receptors
with the cytotoxic potency of T lymphocytes.
The expanding series of FDA approvals, culmi-
nating in the first approval for a solid tumor in
2024, underscores the therapeutic potential of
this platform and highlights the pace of transla-
tional advances in the field.

Nevertheless, significant obstacles remain.
The six central challenges, delayed manufac-
turing and limited availability, T-cell exhaus-
tion, on-target/off-tumor toxicity (including
neurotoxicity), antigen escape, therapy-re-
lated secondary malignancies, and inconsis-
tent persistence and expansion, illustrate the
complexity of engineering living therapies.
Each of these barriers has both a mechanistic
basis and a clinical impact, shaping outcomes
for patients and influencing the safety, accessi-

bility, and durability of CAR-T therapy.

The field’s response to these challenges
has been a remarkable wave of innovation.
Advances in manufacturing and delivery, such
as allogeneic products, CAR-NK platforms, and
in vivo CAR-T generation, promise to shorten
treatment times and broaden patient access.
At the molecular level, strategies to prevent
exhaustion, including c-Jun overexpression,
transcriptional/epigenetic  rewiring  (NR4A/
TOX), metabolic optimization, and intermittent
kinase-inhibitor “rest,” are aimed at sustaining
long-termactivity.Syntheticbiologyapproaches,
including logic-gated CARs, SynNotch circuits,
SNIPER designs, protease-activated “masked”
CARs, and drug-tunable CARs, offer powerful
tools to reduce toxicity and improve preci-
sion. Multi-antigen targeting and adaptive
CAR designs address antigen escape and
tumor heterogeneity, while safety innovations
(suicide switches, TRAC knock-in strategies, and
non-integrating vectors) provide reassurance
against rare but concerning risks of secondary
malignancies. Finally, methods to enhance
persistence and expansion, including enrich-
ment for T-stem cell memory, cytokine engi-
neering, nano-CAR scaffolds, and ligand-based
CARs (APRIL, CD27, CCL27), hold promise for
durable responses across hematologic and solid
tumors. Importantly, the future of engineered
cell therapy is likely to extend beyond T cells.
CAR-modified NK cells and macrophages are
being explored as complementary or alternative
platforms, with potential advantages in safety,
allogeneic compatibility, tissue remodeling, and
antigen presentation. These directions illus-
trate a broader vision in which CAR engineering
becomes a versatile framework applied across
multiple immune effector cell types.

From a clinical perspective, the integration
of artificial intelligence (Al) and machine
learning into target discovery, trial design, and
real-world response modeling continues to
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accelerate progress. By enabling the analysis
of high-dimensional datasets from transcrip-
tomics, proteomics, and single-cell technolo-
gies, these computational tools help to identify
novel targets, deconvolve resistance mecha-
nisms, and predict patient responses, ensuring
that the next generation of CAR-T therapies is
guided by data-driven precision.

In conclusion, CAR-T therapy exemplifies both
the promise and the complexity of person-
alized medicine in oncology. It has already
transformed the standard of care for several
hematologic malignancies and continues to
evolve toward safer, faster, and more durable
applications. The trajectory of the field
suggests that CAR-T and related cellular ther-
apies will not remain niche treatments but will
become foundational components of modern
immuno-oncology. The journey from proof-
of-concept to global application reflects the
challenge of harnessing living cells as medi-
cines and the creativity driving this scientific
revolution. Ultimately, the success of CAR-T
therapy will depend on achieving a balance
between efficacy, safety, accessibility, and
durability, a balance that ongoing research and
clinical innovation are actively pursuing.
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