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Resumen

Introducción: La bioinformática en el cáncer se ha convertido en una poderosa herramienta para 
la detección y el seguimiento de variantes moleculares asociadas a la enfermedad. Actualmente se 
manejan grandes cantidades de datos ómicos para desarrollar y aplicar nuevas herramientas que 
permitan analizar datos eficientemente. El objetivo de esta revisión fue describir el contexto en el 
que han surgido las nuevas tecnologías bioinformáticas y cómo estos avances están contribuyendo 
al estudio del cáncer. 

Métodos: Se realizó una búsqueda en PubMed, Scopus, Google Scholar y ScienceDirect. Se expuso 
información basada en un conjunto de artículos disponibles en inglés y español, relacionados con 
el análisis de datos (n=66). Además, se exponen las principales bases de datos y plataformas bioin-
formáticas para el estudio del cáncer. 

Resultados: Los estudios revisados evidencian que la bioinformática actúa como un eje integrador 
en la investigación de la biología tumoral, facilitando la identificación de biomarcadores, clasificación 
molecular de tumores y estratificación de pacientes, mientras que el avance de la inteligencia artifi-
cial está revolucionando el análisis de datos. 

Discusión: Las herramientas bioinformáticas han permitido una comprensión más profunda de los 
mecanismos moleculares del cáncer, apoyando el desarrollo de estrategias con potencial aplicación 
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clínica, así mismo este aumento de información requiere un control de calidad más estricto. 

Conclusión: La bioinformática es una herramienta en expansión, necesaria en la investigación del 
cáncer, que puede facilitar la orientación adecuada en el diagnóstico y tratamiento, impactando la 
historia natural de la enfermedad. 

Palabras clave: análisis de datos; biología computacional; biomarcadores; genómica; investigación 
biomédica; neoplasias.

Abstract

Introduction: Bioinformatics in cancer has become a powerful tool for the detection and moni-
toring of molecular variants associated with the disease. Currently, large amounts of omics data are 
handled to develop and apply new tools that allow efficient data analysis. The aim of this review was 
to describe the context in which new bioinformatics technologies have emerged and how these 
advances are contributing to cancer research. 

Methods: A search was conducted in PubMed, Scopus, Google Scholar, and ScienceDirect. Infor-
mation was presented based on a set of articles available in English and Spanish related to data 
analysis (n=66). In addition, the main databases and bioinformatics platforms for cancer research 
are presented. 

Results: The reviewed studies show that bioinformatics acts as an integrative axis in tumor biology 
research, facilitating the identification of biomarkers, molecular classification of tumors, and patient 
stratification, while advances in artificial intelligence are revolutionizing data analysis. 

Discussion: Bioinformatics tools have enabled a deeper understanding of the molecular mechanisms 
of cancer, supporting the development of strategies with potential clinical application; likewise, this 
increase in information requires stricter quality control. 

Conclusion: Bioinformatics is an expanding tool, necessary in cancer research, that can facilitate 
appropriate guidance in diagnosis and treatment, impacting the natural history of the disease.

Keywords: data analysis; computational biology; biomarkers; genomics; biomedical research; 
neoplasms.
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Resumen gráfico

Puntos clave

•	 Es una revisión narrativa donde se destaca el uso de la bioinformática desde la investigación bá-
sica a la clínica, centrándose en el rol diagnóstico y pronóstico de la bioinformática en el cáncer.

•	 Se enfatiza que, ante la heterogeneidad tumoral, el análisis multicapa permite identificar vías 
alteradas y posibles blancos terapéuticos; además, el creciente uso de la inteligencia artificial 
(IA) en la biomedicina está rompiendo barreras en el análisis de datos.

•	 Se resalta el impacto de los grandes consorcios como The Cancer Genome Atlas (TCGA), Interna-
tional Cancer Genome Consortium (ICGC) y  Pan-Cancer Analysis of Whole Genomes (PCAWG), 
que generaron redefiniciones moleculares de subtipos tumorales y hallazgos de mutaciones 
conductoras.

•	 El análisis computacional de los grandes datos ómicos mejora la identificación de alteraciones 
clave, el descubrimiento de biomarcadores accionables y la predicción de la respuesta, lo que 
permite estratificar a los pacientes y orientar los tratamientos.

•	 Los repositorios de datos se enriquecen continuamente, lo que permite su reutilización y esta-
blecer diferentes rutas de investigación para análisis integrales que articulen la investigación.
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Introducción

El cáncer es una de las principales causas de 
muerte en todo el mundo y ocupa una parte 
importante de la investigación biomédica actual; 
sin embargo, la detección de biomarcadores y 
el diagnóstico temprano han sido un desafío 
que ha requerido la integración de diversas 
áreas de la ciencia1. Esto ha hecho indispensable 
el uso de la bioinformática, una disciplina que 
se compone de estrategias computacionales, 
matemáticas y biológicas para analizar, visu-
alizar y almacenar los enormes volúmenes de 
información generados por el creciente abor-
daje de las ciencias biológicas1,6. Los métodos 
de secuenciación genómica de alto rendimiento 
han enriquecido grandes bases de datos, que 
requieren estrategias para recopilar y organizar 
la información de manera coherente7. Además, 
la revolución de las ciencias ómicas (genómica, 
transcriptómica, epigenómica, proteómica y 
metabolómica) cambió el enfoque del estudio 
del cáncer al permitir caracterizar, de forma 
sistemática y a gran escala, las alteraciones 
moleculares que definen los tumores y sus 
subtipos clínicos8,9. Históricamente, el análisis 
molecular estaba limitado por la capacidad 
tecnológica; los estudios se centraban en 
genes aislados o en ensayos dirigidos. Actual-
mente, con la secuenciación masiva, la bioin-
formática dejó de ser una herramienta auxiliar 
para convertirse en el eje que conecta los datos 
moleculares con la clínica y la biología tumoral7,9. 
Asimismo, ha facilitado tanto la detección de 
biomarcadores como su validación en múltiples 
cohortes, así como la evaluación de su valor 
predictivo y la identificación de mecanismos 
biológicos subyacentes9. Lo que ha dado lugar a 
un cambio en la praxis clínica hacia una medicina 
de precisión más informada a nivel molecular. 
Este acercamiento integral entre la oncología y 
la biología ha permitido descomponer subpo-
blaciones celulares, rastrear clones tumorales 
y relacionar firmas moleculares con resistencias 

terapéuticas o con el pronóstico; sin la bioin-
formática como área integradora, muchos de 
estos patrones habrían permanecido ocultos. 
El análisis computacional ha evolucionado de la 
mano de los avances tecnológicos en el estudio 
del cáncer7,9. El reconocimiento de la hetero-
geneidad tumoral ha orientado los análisis de 
datos hacia estrategias robustas y multicapa, 
con el fin de identificar vías biológicas frecuen-
temente alteradas en cada subtipo tumoral 
y genes blancos potenciales para terapias 
dirigidas. Por otro lado, la incorporación de la 
inteligencia artificial basada en aprendizaje 
automático a partir de datos heterogéneos 
y de gran volumen en la biología tumoral se 
perfila como un analizador de datos sistemático 
y rápido2. En consecuencia, la bioinformática 
proporciona las herramientas necesarias para 
almacenar, limpiar, integrar y analizar estas 
capas de información, y traducirlas en hipótesis 
biológicas aplicables, capaces de orientar el 
desarrollo de herramientas diagnósticas y 
terapéuticas más efectivas. En este trabajo se 
propuso revisar y sintetizar la contribución de la 
bioinformática al estudio del cáncer, desde las 
bases moleculares que pueden caracterizarse 
con métodos ómicos, pasando por la evolución 
de las estrategias de detección de biomarca-
dores, hasta el papel que juegan los grandes 
proyectos de datos y las técnicas de inteligencia 
artificial en la identificación de vías moleculares 
y genes blanco con relevancia terapéutica y 
pronóstica.

Métodos

Esta revisión narrativa se basó en un proceso de 
búsqueda bibliográfica. El objetivo fue evaluar 
el papel que ha desempeñado la bioinformática 
en el cáncer, centrándose en su potencial diag-
nóstico y pronóstico, así como en las bases 
metodológicas de las principales plataformas 
bioinformáticas, bajo una lupa integral y actuali- 



123Rev. Colomb. Hematol. Oncol 2026; 13 (1-Supl): 119-136

Bioinformática en cáncer.

zada. La bioinformática es un área en constante 
crecimiento que abarca un amplio número de 
herramientas y bases de datos, así como una 
gran heterogeneidad en las formas de proceder. 
Por este motivo, las fases metodológicas de 
esta revisión narrativa (la selección bibliográ-
fica, la extracción de datos y la síntesis) propor-
cionan una perspectiva más amplia.

Búsqueda de literatura

La estrategia de búsqueda para identificar 
artículos elegibles se basó en el diseño experi-
mental y conceptual de los estudios, limitando 
la búsqueda al período 2010-2025. Se incluyeron 
estudios publicados en inglés y en español. Se 
usaron diversas bases de datos utilizando las 
palabras clave “bioinformatics”, “cáncer driver 
genes”, “precision oncology”, “structural vari-
ation” y “omics”. Se consideraron artículos 
que exploran las diversas plataformas bioin-
formáticas y su papel en el diagnóstico y la 
detección de biomarcadores moleculares. La 
búsqueda se realizó en bases de datos como 
PubMed, Scopus, Google Scholar y ScienceDi-
rect, que permitieron filtrar según el periodo 
de búsqueda indicado para obtener artículos 
con información actualizada y relevante en el 
área. Se consideraron estudios generales o 
específicos de acceso libre, así como revisiones 
narrativas y sistemáticas, ensayos clínicos y 
resúmenes de conferencias. La selección de 
los artículos se realizó mediante la revisión de 
títulos y resúmenes obtenidos a partir de la 
búsqueda y el filtro previo (n=66).

Resultados

La oncología ha transitado de un abordaje 
terapéutico empírico a terapias enfocadas 
en la medicina de precisión. El conocimiento 
molecular del cáncer a partir de la investigación 

clínica y molecular, en conjunto con la introduc-
ción de herramientas bioinformáticas, se inte-
gran para articular la investigación traslacional 
que permite llevar a la práctica estos cono-
cimientos3,4. La bioinformática en cáncer resulta 
fundamental para procesar e interpretar la 
cantidad de datos generados por las tecnologías 
modernas de secuenciación y perfilamiento 
molecular. Esto ha repercutido positivamente 
en la identificación de alteraciones genómicas 
clave en tumores individuales, además de 
favorecer el descubrimiento de biomarcadores 
accionables y la predicción de la respuesta a 
terapias específicas4,5. Diversos estudios y revi-
siones han subrayado que esta sinergia entre 
big data genómico y análisis computacional 
es la base para mejorar los resultados clínicos 
en oncología moderna, al permitir estratificar 
tumores y pacientes según sus vulnerabilidades 
moleculares específicas3,5.

Secuenciación

El progreso de la bioinformática en el cáncer 
ha venido de la mano de avances tecnológicos 
en la secuenciación de ADN y ARN, que han 
determinado la cantidad y la complejidad de 
los datos que deben utilizarse para un análisis 
completo. Para empezar, la secuenciación 
Sanger desarrollada en 1970 fue la técnica 
primordial durante décadas y permitió secuen-
ciar el genoma humano por primera vez en 
el Proyecto Genoma Humano del 20039. Sin 
embargo, el método Sanger, basado en termi-
nadores dideoxinucleótidos y electroforesis 
capilar, es relativamente de baja producti- 
vidad (~800 pb por corrida) y su aplicación al 
genoma completo requirió un esfuerzo interna-
cional enorme. La llegada de la secuenciación 
de nueva generación (NGS, como sus siglas en 
inglés, Next-Generation Sequencing) marcó un 
punto de inflexión para la genómica del cáncer. 
Estas técnicas habilitaron el perfilamiento inte-
gral de genomas, exomas y transcriptomas 
tumorales, y con ello el desarrollo de pipelines 
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bioinformáticos estandarizados para el control 
de calidad, alineamiento, llamado y anotación 
de variantes (Figura 1)6. 

 Figura 1. 

Flujo de trabajo para el análisis de secuencias.

En este contexto, plataformas como Illumina/Solexa se consolidaron como el 

estándar clínico e investigativo por medio de 
la amplificación por puente sobre celdas de 
flujo, el aumento de profundidad y cobertura 
de secuenciación, la baja tasa de error por susti-
tución y la operación masiva de secuencias, 
facilitaron análisis más complejos abriendo 
paso a las ciencias ómicas6,7. La secuenciación de 
tercera generación, como PacBio SMRT (Single 
Molecule, Real-Time), permite lecturas de longi-
tudes mayores (~15–25 kb) con alta exactitud, 
y Oxford Nanopore ofrece lecturas ultralargas 
(~100 kb–1 Mb). Por lo tanto, ambas estrategias 
presentan mejoras sostenidas en la precisión y 
la longitud5. Estas tecnologías han mejorado la 
resolución estructural del genoma, facilitando 
la detección de reordenamientos complejos, 
inserciones/deleciones y haplotipos completos 

que las lecturas cortas de NGS podrían frag-
mentar7.

Esta evolución tecnológica ha tenido un impacto 
directo en la investigación del cáncer, pues ha 
hecho posible que incluso laboratorios inde-
pendientes secuencien genomas, ARN, células 
únicas o exomas tumorales con fines investiga-
tivos, permitiendo identificar variantes de resis-
tencia emergentes o mutaciones germinales de 
predisposición en pacientes concretos6. Todo 
esto ha resultado en un crecimiento exponen-
cial de los datos disponibles y, en consecuencia, 
en la necesidad de métodos bioinformáticos 
cada vez más eficientes y automatizados para 
almacenar, procesar e interpretar dichos datos6.
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Proyectos

Así, las tecnologías de secuenciación han dado 
lugar a proyectos internacionales de gran 
escala. Un precursor fue el proyecto del genoma 
humano (1990-2003), que proporcionó el primer 
genoma de referencia, facilitando las compara-
ciones posteriores entre genomas tumorales y 
sanos9. Tras este logro la biología molecular se 
volcó a la identificación de biomarcadores en 
tumores individuales a escala genómica, lo que 
potenció la detección de genes asociados con la 
oncogénesis y variantes somáticas recurrentes 
en ciertos tipos de cáncer, a su vez exigiendo 
avances experimentales como nuevas herra-
mientas bioinformáticas para el ensamblaje, 
alineamiento y anotación de las variantes9,10. 

Proyectos y estudios como los análisis inte-
grales de cáncer de mama/colorrectal y glio-
blastoma han mostrado la eficacia de la secuen-
ciación masiva combinada con análisis de 
expresión génica, para detectar montañas de 
genes que se encontraban frecuentemente 
mutados en ciertos tipos de cáncer (conduc-
toras) y colinas de mutaciones raras (pasajeras) 
que, en conjunto, delinean el paisaje mole-
cular de cada tumor12,13. La conceptualización 
moderna de mutaciones “conductoras” vs. 
“pasajeras” quedó sintetizada en revisiones 
clave, que estiman que un tumor típico acumula 
relativamente pocas mutaciones conductoras y 
muchas mutaciones pasajeras, sin efecto selec-
tivo directo sobre el crecimiento tumoral10,11. 
Esta distinción motivó el desarrollo de métodos 
bioinformáticos para detectar señales de recu-
rrencia de variantes en los datos somáticos y, de 
esta forma, priorizar candidatos de mutaciones 
conductoras14-16. 

Algunas iniciativas de perfilamiento integral 
impulsaron la creación de grandes reposito-
rios de datos genómicos del cáncer. Entre las 
bases de datos primarias se destaca The Cancer 

Genome Atlas (TCGA) lanzado en 2006 por NCI, 
la cual marcó el inicio de la era de los “atlas” 
genómicos del cáncer. TCGA comenzó como 
un proyecto piloto en glioblastoma y cáncer 
de pulmón, pero eventualmente se extendió 
a decenas de tipos tumorales perfilando mole- 
cularmente más de 11.000 tumores de 33 tipos 
de cáncer distintos18. Los hallazgos de TCGA 
incluyeron la identificación de nuevas muta-
ciones conductoras, la redefinición molecular de 
subtipos y el descubrimiento de firmas molecu-
lares en los tipos de cáncer estudiados. En para-
lelo, el International Cancer Genome Consor-
tium (ICGC) coordinó proyectos en más de 15 
países para secuenciar al menos 500 genomas 
completos de 50 tipos tumorales distintos, 
con énfasis en poblaciones diversas8. El ICGC, 
iniciado en 2010, complementó a TCGA exten-
diendo el alcance global del mapeo genómico 
del cáncer e integrando datos de regiones y 
etnias subrepresentadas8. Una colaboración 
entre TCGA-ICGC dio lugar al Pan-Cancer Analy- 
sis of Whole Genomes (PCAWG), publicado 
en 2020, que analizó el genoma completo de 
2.658 tumores de 38 tipos diferentes17. Por 
su parte, PCAWG exploró regiones no codifi-
cantes y organizó las alteraciones estructurales 
a escala global. Entre sus hallazgos, se observó 
que cada tumor presenta, en promedio, 4 a 
5 mutaciones conductoras, incluidas varian- 
tes estructurales mayores (como fusiones 
génicas o duplicaciones) con rol impulsor19. 
También identificó nuevos elementos no codi-
ficantes frecuentemente mutados e ilustró 
la ocurrencia de eventos catastróficos, como 
la cromotripsis y la cromoplexia, que pueden 
impulsar la progresión tumoral19. Mientras que 
otro proyecto de alto alcance ha sido el Human 
Cell Atlas (HCA), iniciado en 2016, con la visión 
de mapear todos los tipos de células humanas 
a partir de sus perfiles moleculares indivi- 
duales20. El HCA tiene repercusiones directas 
en el cáncer, pues sus avances en tecnologías y 
métodos de célula única han sido rápidamente 
aplicados en la investigación oncológica (Tabla 
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1). Los esfuerzos derivados están integrando la 
heterogeneidad intratumoral y la composición 

de los microambientes tumorales en diversos 
tejidos21.

Tabla 1.

Síntesis de los principales proyectos de referencia para el análisis bioinformático del cáncer. 

Proyecto Avance Impacto Referencia

Human Genome Pro-
ject (HGP)

Secuenciación del genoma de 
referencia; base para la ano-
tación genómica.

Proporcionó el primer geno-
ma de referencia, estandari-
zó los datos abiertos y habili-
tó los estudios genómicos en 
el cáncer.

Lander et al. 20019

The Cancer Genome 
Atlas (TCGA)

Perfiles multi-ómicos: WES/
WGS, RNA-seq, metilación, 
CNV, clínica, imágenes.

Identificación de mutaciones 
conductoras, redefinición 
molecular de subtipos. Re-
curso estándar para el rea-
nálisis.

Tomczak et al. 
201318

International Cancer 
Genome Consortium 
(ICGC)

Estudios genómicos coordi-
nados internacionalmente; 
WGS/WES y clínicos.

Amplió la representación po-
blacional de genomas tumo-
rales y facilitó estudios com-
parativos internacionales.

Hudson et al. 
20108

Pan-Cancer Analysis 
of Whole Genomes 
(PCAWG)

Análisis integrador de WGS.

Reveló el papel de las varian-
tes estructurales y de las re-
giones no codificantes. Ade-
más de firmas mutacionales 
y procesos mutagénicos a 
escala.

Aaltonen et al. 
202017

Human Cell Atlas 
(HCA)

Mapeo unicelular y espacial 
(scRNA-seq).

Referencias celulares que 
mejoran la interpretación de 
la heterogeneidad tumoral y 
del microambiente, con es-
tándares unicelulares.

Regev et al. 201720

Nota: WES= whole exome sequencing, WGS= whole genome sequencing, CNV= copy number variants.

Bases de datos

Las bases de datos se usan según corresponda 
al análisis que se realice. La información curada 
derivada de los proyectos se deposita en bases 
de datos secundarias o en plataformas de libre 
acceso, que facilitan la exploración e inter-
pretación de los datos por investigadores de 

todo el mundo. Una de las más utilizadas es 
cBioPortal for Cancer Genomics, una plata-
forma interactiva que permite consultar de 
forma integrada los perfiles genómicos de 
miles de tumores de TCGA y de otros estudios, 
y correlacionarse con datos clínicos22. Algunos 
archivos de secuencias disponibles permiten la 
reutilización de estudios publicados, como las 
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bases de datos ENA y SRA23,24. Por otro lado, 
los navegadores Ensembl, Genome Browser y 
los recursos de NCBI/GenBank proporcionan 
modelos génicos y bases de anotación con las 
respectivas isoformas que son necesarias para 
mapear las coordenadas genómicas25-27. Para 
priorizar variantes somáticas en cáncer y distin-
guir señales recurrentes, se utilizan sistemáti-
camente bases de datos especializadas, como 
COSMIC (variantes somáticas curadas) y ClinVar 
(interpretaciones clínicas), para la detección 
de biomarcadores28,29. La expresión génica y 
la validación mediante reanálisis se basan en 
repositorios como GEO30. La interpretación 
biológica de listados de genes y variantes se 
apoya en ontologías derivadas de plataformas 
como Reactome31, que representan vías y 
procesos biológicos y emplean un modelo de 
datos que funciona como una red de interac-
ciones moleculares. Finalmente, para inter- 
pretar el posible efecto funcional de variantes 
a nivel de proteína, recursos como UniProt para 
evaluar estructuras experimentales y la base 
de predicciones de AlphaFold permiten realizar 
un modelado estructural que avale hipótesis 
mecanísticas36,37. Estas bases de datos y plata-
formas, en conjunto, permiten traducir una lista 
de variantes obtenidas mediante un abordaje 
biológico en hipótesis sobre rutas alteradas y 
posibles terapias efectivas, articulando la inves-
tigación traslacional.

Ramas de estudio

Las ciencias ómicas estudian todos los compo-
nentes moleculares de un sistema biológico, y 
la bioinformática es fundamental para el análisis 
completo de estos datos ómicos54. Es por esto 
que las investigaciones oncológicas se han 
ramificado en diferentes caminos, que abordan 
distintos niveles de la complejidad tumoral17,32. 
Lo que se fundamenta en tres tipos de datos 
biológicos importantes: el ADN, el ARN y las 
secuencias de proteínas (Figura 2)19,33,34. A 
partir de este marco, los análisis genómicos 

suelen ser el punto de partida natural16,17,35. 
Para realizar esto, se requieren herramientas 
y análisis más detallados; así surge el whole 
genome sequencing (WGS) o el whole exome 
sequencing (WES). La estrategia experimental 
típica consiste en: secuenciación, alineamiento, 
llamado de variantes, anotación funcional y 
priorización de mutaciones conductoras38,39. 
Los resultados se comparan mediante bases de 
datos para validar los patrones obtenidos en 
diferentes cohortes. Con estas herramientas se 
obtienen listas de variantes, como SNV/indels, 
que son variantes de uno o pocos nucleótidos, 
CNVs, que son variaciones en el número de 
copias, y SV/fusiones, que son variantes estruc-
turales; y, entre ellas, se seleccionan candidatos 
accionables lo suficientemente robustos como 
para pasar a la verificación funcional40.

Otra rama de estudio es la transcriptómica, 
que articula las rutas, los estados transcripcio-
nales activos y el contexto celular. Este campo 
de investigación estudia la suma de todas 
las moléculas de ARN41. Las plataformas que 
dominan este perfil son los microarreglos y el 
RNA-seq42, éstas demuestran que un evento 
genómico es operativo al evidenciar su transcrip-
ción y capturar firmas biológicas funcionales41,43. 

En el proceso de análisis transcriptómico, se 
alinean las lecturas, se normalizan los conteos 
y luego se prueban las hipótesis mediante el 
análisis de fold change. Algunos estudios trans- 
criptómicos han permitido reconocer el dina-
mismo del ARN, dando lugar al reconocimiento 
de los microARN, pequeñas moléculas de ARN 
(20-22 pb) que pueden modular el control 
postranscripcional del ARNm y explicar por 
qué dos tumores con la misma variante pueden 
comportarse de manera distinta. Por ejemplo, 
el estudio de Lawrie destaca que en múltiples 
neoplasias se observaron miRNA supresores y 
oncogénicos simultáneamente, lo que destaca 
la importancia de la interacción biológica44,45. Por 
lo tanto, incorporar estos perfiles a los análisis 
bioinformáticos ayuda a clasificar pacien-            
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tes, anticipar la respuesta y proponer dianas 
reguladoras46-48. Por ello, su interpretación se 
vuelve más sólida cuando se integra con otras 
ciencias ómicas, como la epigenómica, para 
comprender cómo se habilitan o se bloquean 
los distintos mecanismos de transcripción49.

La epigenómica se caracteriza por estudiar las 
modificaciones que regulan la expresión génica 
sin alterar la secuencia, estos análisis revelan 
metilación del ADN, modificaciones de histonas 
y la accesibilidad de la cromatina50. En cáncer, el 
patrón típico es doble, Wilson y colaboradores 
señalaron que la hipometilación global desesta-
biliza el genoma y activa regiones repetitivas de 
genes de factores de crecimiento como el R-Ras 
y la familia de genes MAGE (melanoma-asso-
ciated antigen genes)51 , por otro lado, en una 
revisión Baylin explica que la hipermetilación 
local en promotores de genes supresores tales 
como p16, MLH1 y BRCA1 silencia y favorece la 
progresión tumoral52. En estos estudios la bioin-
formática resulta integrativa.

Otro de los enfoques existentes es la 
proteómica, que estudia de manera global el 
conjunto de proteínas y sus modificaciones 
posteriores a la traducción. Las proteínas 
contribuyen al desarrollo del cáncer debido 
a la activación aberrante de diversas vías de 
señalización proteica, por lo cual constituyen 
importantes dianas terapéuticas53,54. El trabajo 
de Slamon explica que cuando el oncogén 
ERBB2 está amplificado, la célula sobreexpresa 
la proteína HER2 en su superficie y en conse-
cuencia, HER2 se autofosforila y activa rutas 
que impulsan proliferación y supervivencia 
celular55,56. Los avances más recientes en espec-
trometría de masas y en tecnologías de microar-
reglos de proteínas han situado a la proteómica 
como líder en la investigación oncológica. 
Estas tecnologías permiten cuantificar miles de 
proteínas y caracterizar redes proteicas tumo-
rales. Esto, combinado con las plataformas 

bioinformáticas, permite explorar las interac-
ciones entre proteínas y mapear redes prote-
icas complejas. Además, la IA y el aprendizaje 
profundo han generado nuevas herramientas 
de predicción de proteínas, como AlphaFold, 
con las que es posible obtener información 
sobre características proteicas y su relación con 
posibles sitios de unión a fármacos37,54.

La metabolómica es el estudio y análisis científico 
de los metabolitos, que son el producto final 
de la actividad celular y, por tanto, reflejan 
directamente el estado funcional de las rutas 
y los fenotipos tumorales57. En el estudio 
metabolómico de Dang y colaboradores se iden-
tificó un oncometabolito denominado 2-hidroxi-
glutarato (2-HG) en tumores con alteraciones 
en IDH1/2, detectado mediante cromatografía 
líquida acoplada a espectrometría de masas 
(LC-MS); encontrando que la acumulación de 
2-HG contribuye a la oncogénesis54,58. Otros 
estudios como el de Pollard y Selack han usado 
la técnica de cromatografía de gases acoplado a 
espectrometría de masas (GC-MS) para encon-
trar metabolitos que se acumulan en tumores 
y favorecen la metástasis y una mayor agresi- 
vidad59,60. Además, los perfiles metabolómicos 
revelan dependencias de rutas bioquímicas 
que pueden focalizarse para ser utilizadas 
como dianas terapéuticas, como es el caso de 
la glutaminólisis cuando el oncogén MYC está 
activado61. En un estudio Wang y colaboradores 
observaron que los metabolitos circulantes 
pueden ser potenciales biomarcadores para la 
detección temprana y el diagnóstico del cáncer; 
además, señalaron que se han caracterizado 
metabolitos específicos con una gran capacidad 
para monitorear la progresión y la metástasis 
del cáncer62. Esto destaca la perfilación bioin-
formática de metabolitos presentes en tejidos 
tumorales o en fluidos mediante paneles 
metabólicos en biopsia líquida, proporcionando 
una firma metabólica del tumor63.



129Rev. Colomb. Hematol. Oncol 2026; 13 (1-Supl): 119-136

Bioinformática en cáncer.

Sumado a esto, la inteligencia artificial ha 
tomado fuerza, actuando como una capa trans-
versal que permite identificar patrones al inte-
grar todas las ómicas64. Lo que resulta en un 
acoplamiento entre diferentes ramas medi-

ante la bioinformática convirtiendo los datos 
dispersos en conocimiento útil, contribuyendo 
al desarrollo de terapias dirigidas y de estrate-
gias de tratamiento personalizadas.

Figura 2. 

Flujo de datos de bioinformática a partir de muestras de tejido tumorales.

Análisis multiómicos

Los estudios multiómicos combinan delibera-
damente capas de información molecular con 
el objetivo de construir modelos integrados de 
la biología tumoral. Este enfoque va más allá 
de la adición de datos, pues permite validar 
hallazgos entre plataformas, reducir los falsos 
positivos y distinguir señales verdaderamente 
funcionales. Por ejemplo, en el cáncer de 
mama la clasificación de subtipos es crucial, así 
que en un estudio de Wang y colaboradores 
se aplicó una estrategia multiómica para tipi-
ficar tumores de mama, combinando datos de 
distintas plataformas65. Este enfoque reveló un 
nuevo subtipo molecular “híbrido” asociado 
a un pronóstico desfavorable. Los investi-
gadores utilizaron biomarcadores derivados de 
datos de expresión diferencial entre subtipos 
para construir modelos pronósticos y clasifica-
dores. Dichos modelos se validaron empleando 

cohortes externas obtenidas de bases de datos 
públicas (GEO). Esta integración de datos de 
diferentes cohortes y tipos permite profundizar 
en la heterogeneidad del cáncer y en su traduc-
ción en terapias de precisión y pronóstico mejo-
rado, usando métodos bioinformáticos que 
permitan articular datos de distintos orígenes65. 

Otro estudio con un enfoque integrativo, 
donde basándose en la alta heterogeneidad 
del cáncer de pulmón, particularmente del 
adenocarcinoma de pulmón (LUAD), llevaron 
a cabo un análisis de 432 pacientes con LUAD 
de la base de datos de TCGA y 398 pacientes de 
los conjuntos de datos GEO66. Con el que inte-
graron perfiles epigenéticos, transcriptómicos y 
clínicos. Luego, mediante algoritmos de apren-
dizaje automático, establecieron una nueva 
clasificación molecular a partir de estos perfiles 
y descubrieron subtipos basados en la regu-
lación epigenética. Construyeron un modelo de 
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riesgo que predice el pronóstico, la infiltración 
inmune, la respuesta a la inmunoterapia y la 
sensibilidad a fármacos. Con lo cual lograron 
estratificar a pacientes con LUAD más allá de las 
mutaciones puntuales, lo cual puede orientar 
a nuevas formas de tratamiento en función de 
la firma epigenética-transcriptómica de cada 
tumor66. Estos estudios ilustran cómo la inte-
gración de capas ómicas ha permitido revelar 
relaciones causales y funcionales que serían 
difíciles de detectar con un único tipo de dato.

Discusión

La bioinformática ha transformado profun-
damente el enfoque oncológico al integrar el 
estudio de grandes volúmenes de datos mole- 
culares y clínicos, permitiendo avances sustan-
ciales en la comprensión de la heterogeneidad 
del cáncer. Los estudios revisados destacan 
cómo la bioinformática no solo facilita la iden-
tificación de biomarcadores relevantes para 
diagnóstico y tratamiento1-3, sino que también 
optimiza el uso de tecnologías de secuenciación 
de alta capacidad, que ha impulsado la conver-
gencia entre la biología molecular, las ciencias 
ómicas y el análisis computacional, consolidán-
dose como un eje central de la oncología de 
precisión4,5. Todo esto, apoyándose en la evolu-
ción de las técnicas de secuenciación, desde 
Sanger hasta las tecnologías de NGS. Debido 
a que la capacidad de obtener datos masivos 
con alta resolución ha facilitado la identifi-
cación de mutaciones conductoras y pasajeras, 
redefiniendo la caracterización molecular de los 
tumores6,9.

En este contexto, proyectos como TCGA, ICGC y 
PCAWG han sido fundamentales para identificar 
patrones recurrentes de alteraciones genómicas 
mediante el análisis de grandes cohortes tumo-
rales8,17,18. Estos consorcios han permitido 

estratificar pacientes según su perfil molecular 
y mejorar la predicción de la respuesta a tera-
pias específicas, fortaleciendo el vínculo entre 
la investigación genómica y la práctica clínica14. 
Los estudios de algunas neoplasias basándose 
en datos ómicos han mostrado cómo los enfo-
ques integrativos de diferentes datos pueden 
revelar nuevos subtipos moleculares y mejorar 
la predicción pronóstica, apoyando a su vez el 
desarrollo de modelos terapéuticos personali- 
zados8,65. Destacando el uso de plataformas y 
herramientas bioinformáticas para validación 
de datos, buscando mejorar la capacidad en 
la identificación de biomarcadores, dianas 
terapéuticas y la detección de firmas molecu- 
lares asociadas con la resistencia a terapias 
y la progresión tumoral9,30. A su vez, nuevas 
herramientas como la inteligencia artificial han 
tomado fuerza, mostrando que el aprendizaje 
automático de la IA puede ofrecer posibilidades 
en la medicina personalizada y la detección de 
patrones moleculares que han sido limitados 
con las herramientas tradicionales64. Acen- 
tuando la dirección integradora que ha tomado 
la investigación biomédica en el cáncer, con 
enfoques sistemáticos y predictivos, donde 
las nuevas posibilidades ofrecidas por la bioin-
formática pueden cambiar el curso natural de la 
enfermedad.

Adicionalmente, aunque la bioinformática ha 
demostrado un impacto decisivo en la investi-
gación oncológica, su aplicación clínica enfrenta 
desafíos importantes. Entre ellos se encuentran 
el manejo y la calidad de los datos, la falta de 
estandarización entre plataformas, la repro-
ducibilidad de los análisis y la necesidad de vali-
dación experimental de los hallazgos computa-
cionales9. Asimismo, la integración multiómica 
requiere infraestructuras computacionales 
robustas y equipos interdisciplinarios capaces 
de interpretar los resultados en un contexto 
biológico y clínico. Abordar estas limitaciones 
será clave para consolidar el uso de la bioin-
formática como una herramienta rutinaria en la 
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oncología de precisión y maximizar su impacto 
en la toma de decisiones clínicas.

Conclusiones

El cáncer representa un desafío continuo en la 
investigación biomédica, que requiere la acción 
conjunta de diversas áreas de la ciencia para 
lograr resultados eficientes en el estudio de 
la enfermedad. Para que los hallazgos ómicos 
lleguen a la clínica es imprescindible contar con 

flujos de trabajo reproducibles; desde la calidad 
de las lecturas pasando por la anotación y priori- 
zación de variantes, para concretar en una inter-
pretación clínica validada. Además, es funda-
mental consignar los datos en repositorios que 
permitan su reutilización y su validación inde-
pendiente. Las herramientas bioinformáticas 
y el avance de la inteligencia artificial plantean 
formas novedosas y sistemáticas de análisis 
de datos, lo que pone sobre la mesa las limita-
ciones técnicas y éticas de estas tecnologías, 
destacando a su vez la importancia de la vali-
dación experimental.
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