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Sarcomagenesis
Sarcomagénesis

Resumen
Los sarcomas representan un número heterogéneo de neoplasias que surgen de la transformación de algunas células me-
senquimales primitivas. La evidencia ha aumentado de forma considerable respecto de las células pluripotenciales que dan 
origen a estos tumores y que parecen ser responsables de la iniciación, el mantenimiento, la diferenciación y la proliferación 
del osteosarcoma, sarcoma sinovial, rabdomiosarcoma y del sarcoma de Ewing. Se han adoptado diferentes métodos para la 
identificación de células primitivas en los sarcomas, tales como el uso de marcadores de superficie, la citometría de flujo para 
el aislamiento de células con elevada actividad de la aldehído deshidrogenasa y la realización de análisis de población celular. 
Esta revisión resume y analiza datos sobre la tumorigénesis de los sarcomas, evaluando su posible papel en la sensibilidad y 
resistencia a diferentes intervenciones clásicas (quimio y radioterapia), así como nuevas terapias dirigidas molecularmente.

Palabras clave: Sarcoma, célula pluripotencial, célula mesenquimal, genotipo.

Abstract
Sarcomas represent a heterogeneous group of neoplasms arising from the malignant transformation of mesenchymal cells. 
Evidence has increased considerably regarding the origin of sarcomas having putative sarcoma stem cells which are respon-
sible for the initiation, maintenance, differentiation and proliferation of osteosarcoma, synovial sarcoma, rhabdomyosarcoma 
and Ewing’s sarcoma. Different methods have been adopted for identifying primitive cells in sarcomas such as identifying sur-
face markers, using flow cytometry for isolating cells having aldehyde dehydrogenase activity and performing side population 
analysis. This review summarizes and discusses data regarding the tumorigenesis of sarcomas, assessing their potential role 
in sensitivity and resistance to different classical interventions (chemotherapy and radiotherapy) as well as new molecularly-
directed therapies.
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Introduction
Sarcomas represent a heterogeneous and uncom-

mon group of malignancies, arising from connective tis-
sues whose primary function is to support an organism 
and its systemic integration. Together, they account for 
over 20% of all pediatric solid malignant tumors but 
less than 1% of all adult malignancies. The vast majority 
of diagnosed sarcomas arise from soft tissues, while 
malignant bone tumors make up just over 10% of all 
sarcomas1. Sarcomas affect ~11.000 individuals annually 
in the USA and around 200.000 worldwide2,3. Risks for 
sarcomas developing can be divided into environmen-
tal exposure, genetic susceptibility, and an interaction 

between them. Radiotherapy has been strongly associa-
ted with secondary sarcoma development as the history 
of hernias has revealed a greater risk of Ewing’s sarcoma 
(EWS) developing among children4,5. Bone development 
during pubertal growth spurts has been associated 
with the development of osteosarcoma and exposure 
to chemicals such as herbicides whilst chlorophenols 
have also been linked to how sarcomas originate1. 

Sarcomas have been historically grouped into two 
main types according to tumor location: soft tissue 
sarcoma (STS) and primary bone sarcomas; however, 
an alternative genetically-based classification has divi-
ded sarcomas into two broad categories since 20026, 
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each including clinically-diverse tumor subtypes. The 
first includes sarcomas having near-diploid karyotypes 
and simple genetic alterations including translocations 
or specific activating mutations (alveolar rhabdom-
yosarcoma, myxoid liposarcoma, EWS and synovial 
sarcoma); the second covers tumors having complex 
and unbalanced karyotypes characterized by genome 
instability resulting in multiple genomic aberrations 
(leiomyosarcoma, malignant fibrous histiocytoma and 
osteosarcoma)7,8 Such genomic subtypes seem to be 
related to a common subpopulation of self-renewing 
cells capable of initiating sarcomas and maintaining 
them in the long-term. Increasing evidence has sugges-
ted that multi-potent mesenchymal stem cells (MMSC) 
reproduce human sarcomas upon the overexpression of 
specific fusion oncoproteins or disruption of key signa-
ling pathways9. Ex vivo MMSC have certain dominant 
characteristics including adhesion plasticity. 

There is CD105, CD73 and CD90 expression and lack 
of reactivity to CD45, CD34, CD14, CD11b, CD79b, CD19 
and HLA-DR when MMSC are kept in standard culture 
conditions. Likewise, MMSC should be capable of diffe-
rentiating into osteoblasts, chondroblasts and fat cells 
in vitro10. The exact nature and localization of MMSC in 
vivo remain poorly understood, but recent data has indi-
cated that sarcoma precursors could have a perivascular 
distribution11,12, their niche including several cell subsets 
spanning different stages of mesodermal development 
having distinct potency, ranging from multi-lineage stem 
cells to unilineage precursors or even fully-differentiated 
cells13. The expression of embryo markers, such as Oct-4, 
in tumor and in aged MMSC is another finding suppor-
ting a common origin for sarcomas14. 

The present review has been aimed at presenting 
and discussing evidence related to the origin of sarco-
mas, following the hierarchical principle of a primordial 
cell model. 

The genetic taxonomy of sarcomas
Most sarcomas involving simple genetic alterations 

have translocations and account for around a third of 
such neoplasms; they tend to be presented de novo and 
some of the cytogenetic damage is retained through 
clonal evolution. Most fusion genes encode chimeric 
transcription factors causing transcription alterations, 
whilst others encode proteins having tyrosine kinase or 
growth factor activity15.

By contrast with sarcomas derived from well-recognized 
translocations, the second group involves complex kar-
yotype modifications arising from less aggressive forms 
and runs through different stages of the disease, each 
having greater complexity. The liposarcoma, peripheral 
nerve-derived tumors and chondrosarcomas are clear 
examples of such subgroup. The main mechanisms 
triggering sarcomagenesis are associated with transcrip-
tional deregulation producing aberrant fusion proteins 
arising from genomic rearrangements as well as the 
presentation of somatic mutations in driver genes from 
differing signaling routes and abnormalities regarding 
the number of DNA copies. Likewise, the importance of 
genome integrity associated with telomere maintenan-
ce has been recognized. Major telomerase activation 
in the absence of alternative lengthening of telomeres 
(ALT) characterizes sarcomas having specific chromo-
some translocations; nevertheless, ALT occurs more 
frequently in sarcomas having non-specific complex 
karyotypes16,17. Lafferty-Whyte et al., have described a 
genetic signature which led to classifying telomerase 
and changes in ALT for pluripotent cell mesenchymal 
transition18.

Sarcomas having non-specific complex karyotypes are 
sometimes found which have no association with trans-
locations regularly present in hereditary syndromes pro-
duced by genomic instability, such as the Werner (WRN), 
Nijmegen Breakage (NBS1) and Rothmund-Thomson 
(RECQL4) syndromes19-21. 

Studies of the genome’s complete sequence have 
found that around 35% of osteosarcomas and 18% 
of chordomas have chromothripsis; this involves 
hundreds of chromosome rearrangements occu-
rring during a particular cell crisis. Such catastrophe 
has been described in up to 3% of neoplasms but 
appears in a quarter of high-grade bone tumors 
and in medulloblastoma of children predisposed by 
germinal mutations in p5322-24. The most representa-
tive examples of transcriptional regulation amongst 
sarcomas are associated with the PAX3-FOXO1 
fusion protein whose direct objective would include 
myogenic genes such as myogenic differentiation 1 
(MYOD1) and myogenic factor 5 (MYF5), as well as 
other biologically-active elements such as fibroblast 
growth factor receptor 4 (FGFR4), anaplastic lympho-
ma kinase (ALK), mesenchymal epithelial transition 
growth factor (c-MET), insulin like growth factor 1 
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receptor (IGF1R) and myelocytomatosis viral related 
oncogene, neuroblastoma-derived (MYCN)25,26.

The ASPSCR1 gene becomes fused to transcription 
factor TFE3 (IGHM enhancer 3) in alveolar sarcoma to 
form a chimeric protein retaining the TFE3 DNA bin-
ding domain (containing the CACGTG recognition site). 
Recognition studies have found that such alteration is 
related to activation of MET 38, uridine phosphorylase 
1 (UPP1) and CYP17A1 genes (cytochrome P450 17A1)27.

A somewhat more complicated picture has emerged 
concerning EWS which affects Ewing sarcoma break-
point region 1 (EWSR1) and Friend leukemia virus 
integration 1 (FLI1) genes28. Several ChIP-seq datasets 
have been produced in EWS cell lines with endog-
enous EWS-FLI1, all using the same FLI1 antibody for 
immunoprecipitation of EWS-FLI1-bound DNA. The 
amount of bound genomic regions in such studies has 
varied widely14-16. ChIP-seq has demonstrated that most 
EWS-FLI1-bound genomic regions were intergenic and 
that EWS-FLI1 binds avidly to GGAA microsatellites 
through its FLI1-derived ETS family DNA-binding do-
main28,29. Microsatellites containing 6 or more GGAA 
repeats (the core ETS domain binding sequence) are 
associated with EWS-FLI1 target gene upregulation28,30. 
These repeats are often more than 200kb upstream of 
the target gene transcription start site, suggesting that 
chromatin looping brings distant regions together in a 
transcriptional hub to allow EWS-FLI1 to modulate gene 
expression. EWS-FLI1 also binds to more conventional, 
non-repetitive ETS motifs and such sites are associated 
with genes repressing or activating transcription30. A sub-
set of EWS-FLI1 target regions has shown co-enrichment 
of sites for E2F, nuclear respiratory factor 1 (NRF1), and 
nuclear transcription factor Y (NFY), thereby raising the 
possibility of specific cooperative interactions31.

On the other hand, some EWS cell lines may be 
able to reprogram themselves, as such events have 
been documented after the EWS-FLI1 gene has been 
silenced, producing a more similar expression profile 
to that of mesenchymal stem cells (MSC) which might 
then be induced to become differentiated by adipo-
genic or osteoblast linage32,33. For example, EWS-FLI1 
has induced limited expression of a neuroeptodermal 
gene which can program and impose an osteogenic 
differentiation mold by inhibiting Runt-related transcrip-
tion factor 2 (RUNX2) which is related to other genes 
promoting bone maturation. EWS-FLI1 expression in 

MSC has induced EWS in a reverse experiment; on the 
contrary, EWS-FLI1 expression provoked apoptosis in 
other differentiated cells presenting intact ARF-p5334.

EWS-FLI1 directly upregulates the polycomb group 
repressor enhancer of zeste homolog 2 (EZH2) in human 
MSC35, and has induced expression of embryonic stem 
cell genes POU5F1 (also known as OCT4), SRY-box 2 
(SOX2) and NANOG, at least partly by repressing 
miR-145 expression36. Interestingly, EWSR1 also fuses 
with POU5F1 itself, albeit rarely, in undifferentiated 
bone sarcoma37,38, myoepithelial tumors of the soft 
tissue39, and in certain salivary gland tumors8,40.

Synovial sarcomas contain fusions between the 
SS18 (SYT) SSX1 or the SSX2 genes. Analogously to 
that found in EWS-FLI1, synovial sarcoma cell lines also 
express POU5F1, SOX2 and NANOG. Silencing SYT-SSX 
fusion in such cell lines has increased their differen-
tiation potential regarding adipogenic, osteoblast or 
chondrogenic linages41. Synovial sarcoma formation 
in mice accompanied by the conditional expression 
of SYT-SSX2 in myoblasts or in other cell linages has 
provided additional information about fusion protein 
nuclear reprograming in a compromised variety of me-
senchymal linages. Some myxoid liposarcoma fusions, 
such as FUS-DDIT3 (SHOP) and ARMNS (PAX3-FOXO1), 
seem to have been able to transform mesenchymal 
progenitors in murine models. Figure 1 describes the 
genetic ancestry of different sarcomas.

Mutations and signaling routes in sarcomas
Excluding gene fusions in sarcomas having trans-

locations, it can be stated that few driver genes have 
recurrent mutations. The most representative examples 
would be angiosarcomas, an aggressive vascular tumor 
which has been shown to overexpress tyrosine quinase 
receptors in some transcription profiles, including KDR 
(VEGFR2), TIE1, SNF related kinase (SRNK), TEK and 
FMS-related tyrosine kinase 1 (FLT1)42. Sequencing these 
5 genes has revealed that 10% of angiosarcomas have 
mutations in KDR, and that when mutant VEGFR2 pro-
teins have expressed COS-7 cells, there has been inde-
pendent ligand activation. Large-scale genomic analysis 
of seven types of sarcoma has identified mutations in 
TP53, NF1 and PI3KCA43; 17% of pleomorphic liposar-
coma have mutations in TP53, such finding being con-
sistent with the fact that such alterations are frequent 
in tumors having complex karyotypes. On the contrary, 
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in translocation-associated sarcomas, alterations in 
TP53 and homozygous deletions in cyclin-dependent 
kinase inhibitor 2A (CDKN2A) have been less common, 
but when present have usually been related to a very 
aggressive clinical course (44); 18% of myxoid/round 
cell liposarcomas have mutations in PI3KCA, thereby 
suggesting their role as modifications cooperating with 
the fusion protein (FUS-SHOP) in developing sarcoma-
genesis45. Curiously, mutations found in PI3KCA have 
been located in the two hotspots observed in epithelial 
tumors: the helical domain (E542K and E545K) and the 
kinase domain (H1047L and K1047R). Patients having 
mutations in the helicoid domain have a lower chance of 
survival attributable to the disease; they have increased 
AKT phosphorylation in CREB-regulated transcription 
coactivator 2 (TOR2) and in pyruvate dehydrogenase 
kinase 1 (PDK1)45.

Another recent finding has concerned precise NF1 
mutations or deletions being present in 10% of mixofi-
brosarcomas and 8% of pleomorphic liposarcomas. This 
finding has been associated with individuals presenting 
neurofibromatosis type 1 (alterations in the germ-line 
and somatic mutations) but has not been described 
previously in subjects having sporadic tumors43.

A special chapter deals with genomic alterations 
of gastrointestinal stromal tumors (GIST); mutations in 
KIT and, to a lesser extent, in PDGFRA are considered 
primary effectors of the disease, meaning that they are 
routinely identified in clinical practice before treatment 
is begun. Physiologically, these receptors are activated 
after ligand binding, thereby triggering receptor di-
merization followed by auto-phosphorylation of the 
intracellular tyrosine kinase domain and final activation 
of multiple substrata included in the signaling pathway, 
such as PI3K/AKT, RAS, MAP and JAK/STAT. Mutations 
in KIT and PDGFRA are mutually exclusive in GIST and 
around 10% of these tumors have a wild genotype; 
some recent series have described the presence of 
the BRAF gene V600E mutation in up to 7% of these 
patients45,46. Until quite recently, no mutations had 
been detected in KRAS in GIST patients having altera-
tions in KIT; however, Antonescu et al., have identified 
mutations in codon 12 (G12D: GGT->GaT), 13 (G13D: 
GGC->GaC), and a concomitant variation (G12A/G13D: 
GGT->GcT and GGC->GaC) in KRAS in three patients 
without prior exposure to imatinib (5%)47. Another 
group of GIST patients (children) has overexpressed 

IGF1R MRNA and its protein, even though the mecha-
nism for such alteration remains unknown. In fact, most 
pediatric tumors have diploid genomes48.

Alterations in the number of gene copies 
DNA copy-number alterations provide the third 

route for sarcomagenesis. Sarcomas have a range of 
complexity among human malignancies regarding 
their copy-number alterations49. They vary from trans-
location-associated sarcomas with few copy-number 
alterations (broad or focal) to karyotypically-complex 
subtypes that are heterogeneous, unstable and pro-
foundly altered regarding their genomic copy num-
ber. Moreover, a recent high-resolution array-based 
copy-number analysis has revealed an intermediate 
complexity group characterized by few, yet highly re-
current, amplifications exemplified by undifferentiated 
liposarcomas43. Information from another copy-number 
analysis has shown that the third category can be sub-
divided into sarcomas having few chromosome arm or 
whole chromosome gains or losses and sarcoma geno-
mes having a high level of chromosomal complexity50.

Intermediate complexity sarcomas, such as well-
differentiated and undifferentiated liposarcomas, are 
driven by chromosome 12 alterations, often generating 
extra-chromosomal episomes, ring chromosomes and 
larger markers51. These 12q gains have high preva-
lence (80-90%) and co-amplified oncogenes cyclin-
dependent kinase 4 (CDK4) and MDM2 can serve as 
confirmatory diagnostic markers52 and as targets53. 
Another gene affected by 12q amplification is HMGA2, 
which often loses its 3′ untranslated region (UTR), dis-
rupting microRNA-mediated repression54. This genetic 
remodeling of chromosome 12 is likely the result of 
progressive rearrangement and amplification in an evol-
ving amplicon rather than a single catastrophic event 
such as the recently proposed chromothripsis. Similar 
12q amplifications occur at lower frequencies in other 
mesenchymal tumors such as osteosarcomas55. Other 
remarkable, and less frequent amplifications in the inter-
mediate sarcoma group occur on 1p and 6q, these am-
plifications, which appear to be mutually exclusive, span 
genes in the p38 and JNK pathways of MAPK signaling 
including, on 1p, JUN and, on 6q, TAB2 and MAP3K5 
(ASK1)56,57. Another genomic amplification alteration is 
telomerase reverse transcriptase (TERT) located on 5p43. 
Some targets of genomic amplification appear to be 
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shared among a subset of both intermediate and highly 
complex sarcomas, including Yes-associated protein 1 
(YAP1) and vestigial like 3 (VGLL3) on 11q22 and 3p12, 
respectively58.

On the other hand, highly complex sarcomas harbor 
multiple numerical and structural chromosome aberra-
tions that are similar to those previously described in 
epithelial tumors. Molecular classification of these sub-
types reflects varying levels of similarity in their genomic 
aberrations; some subtypes may be considered a single 
entity59, while others are distinct60. Broad amplifications 
of several chromosome arms (such as 5p)61 often occur 
in combination with deletions affecting well-established 
tumor suppressors such as CDKN2A, CDKN2B, PTEN, 
retinoblastoma 1 (RB1), NF1 and TP53. In fact, several 
of these genes play a direct role in maintaining chro-
mosome integrity62 and their loss of function may be 
an early event leading to genomic instability in highly 

complex sarcomas. In other subtypes, such as leiom-
yosarcoma, genomic deletions are more common than 
amplifications62.

Genesis of primary sarcomas
It has been established recently that transformed 

MMSC may initiate sarcomagenesis in vivo. Efforts 
have been directed towards characterizing such 
transformation and also to prospectively generating 
specific models for different sarcomas. These studies 
include both spontaneous and induced transforma-
tion of MMSC mediated by specific alterations such 
as the accumulation of chromosome instability, 
p53 mutations or loss of CDKN2A/p16. Mouse MMSC 
is especially predisposed to gain these alterations 
after long-term in vitro culture favoring clonal se-
lection63-66. p53-depleted mouse adipose-derived 
MSC (mASC) have been capable of originating 

Figure 1. Genetic ancestry of different sarcoma’s subtypes.
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leiomyosarcoma-like tumors after injection into immu-
nodeficient mice. This finding has been supported by a 
differentiation-based microRNA study which identified 
leiomyosarcoma as an MSC-related malignancy67,68. 
Another study determined that complete loss of p53 
expression in p21−/−p53+/− mASC after culture in-
duced cell growth, karyotype instability and loss of 
p16INK4A which prevents senescence, thereby resul-
ting in the formation of fibrosarcoma-tumors in vivo69. 
Overexpression of c-MYC in p16INK4A−/−p19ARF−/− 
bone marrow mouse MMSC results in osteosarcoma 
developing, accompanied by a loss of adipogenesis. 
Similarly, the loss of other cell cycle regulators, such 
as Rb, has not transformed mMSC but its deficiency 
has potentiated tumor development of p53-deficient 
mouse MMSC, generating further undifferentiated 
sarcomas70.

Although Rb-deficient mice develop normally, Rb 
deficiency synergizes with p53 deletion to accelerate 
sarcoma formation and increases the frequency of 
poorly-differentiated sarcomas.

In other mouse models where mutations have 
been restricted to muscle, the expression of oncogenic 
K-RAS or the mutation of endogenous K-RAS has been 
needed to efficiently induce sarcoma formation in p53-
deficient tissue71.

Sarcomas developed in these models have been 
characterized as pleomorphic rhabdomyosarcoma 
and high-grade sarcomas with myofibroblastic diffe-
rentiation. Interestingly, deletion of the INK4A-ARF 
locus could substitute the p53 mutation in such K-RAS 
mutation-based model of sarcoma development72.

Human MMSC do not undergo malignant transfor-
mation as easily as mouse primitive cells. For instance, 
as opposed to mouse MMSC, inactivation of p53 or 
p53 and Rb does not induce transformation in humans, 
although p53-/Rb-deficient human MMSC display a 
higher growth rate in vitro coupled to an extended 
lifespan73,74.

Several oncogenic events must be combined to 
promote in vivo sarcomas from human MMSC, in-
cluding introducing the human telomerase catalytic 
subunit (hTERT), HPV-16 E6 and E7 (abrogating p53 
and Rb family member functions), SV40 small T- or 
large T-antigens (resulting in c-MYC stabilization and 
inactivating Rb and p53, respectively) and oncogenic 
H-RAS (providing a constitutive mitogenic signal)75,76.

In one striking model, transforming human MMSC 
has been associated with a gradual increase in geno-
mic hypomethylation, although this is not necessary 
for sarcomagenesis. Using a different basic approach, 
another research group has transformed human 
MMSC through ectopic expression of hTERT, H-RAS 
and BMI-1 thereby inhibiting the expression of genes 
controlled by polycomb response elements, including 
p16INK4A77.

It has also been reported that some hTERT-transduced 
human MMSC lines lose contact inhibition, acquire 
anchorage-independent growth and form tumors in 
mice after long-term in vitro culture. This has been 
associated with the deletion of the Ink4a/ARF locus 
and with acquiring an activating mutation in K-RAS. 
Overall, in vivo tumors originating from most of these 
transformed human MMSC have been classified as 
undifferentiated spindle cell sarcomas76.

Besides inactivation of cell cycle regulators, hMSC 
transformation has been related to alterations in seve-
ral signaling pathways. It has been reported that the 
PI3K-AKT-mTOR signaling pathway plays a critical role 
in the development of leiomyosarcomas.

Thus, mice carrying a homozygous deletion of PTEN 
in the smooth muscle have developed leiomyosarcoma. 
PTEN and PI3KAKT involvement in leiomyosarcoma 
has been implicated by the fact that these signaling 
pathways are dysregulated in leiomyosarcoma-forming 
p53-decifient mouse MMSC78.

The WNT/β-catenin pathway plays a major role 
in the balance between self-renewal, differentiation, 
regulation and invasion of human MMSC. The loss of 
WNT characteristics in MMSC leads to malignant trans-
formation and reduces apoptosis; accordingly, a recent 
study has supported a role for aberrant β-catenin sta-
bilization in promoting MMSC-derived tumorigenesis79. 
Similarly, inactivation of WNT signaling upon treatment 
of previously SV40-immortalized human MMSC with 
the WNT inhibitor DKK1 has led to full malignant trans-
formation of these cells and the consequent in vivo 
formation of malignant fibrous histocytoma80.

Conversely, restoring WNT signaling in sarcoma cells 
has allowed them to differentiate amongst different 
mesenchymal lineages. It has been reported that key 
components of the WNT pathway are down-regulated 
in osteosarcoma compared to normal human MMSC 
and MMSC differentiated into osteoblast81.
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Conclusions
Sarcomas are generally studied when the full trans-

formation events have already occurred and therefore, 
the mechanisms of transformation and pathogenesis 
are not amenable to analysis with patient samples. Thus 
there exists the need to establish bona fide mouse and 
human based models to recapitulate sarcomagenesis in 
vitro and in vivo. Over recent years, mounting evidence 
indicates that MMSCs from different sources may re-
present the putative target cell of origin for a variety 
of human sarcomas, thus linking MMSCs and cancer. 
Future research should be aimed at defining precisely 

the specific phenotype of the MMSC populations at 
the origin of the different types of sarcomas as well as 
at dissecting the mechanisms governing MSC transfor-
mation. We envision that experimental research based 
on MMSCs coupled to whole-genome sequencing of 
different types of primary sarcomas will advance our 
attempts to develop accurate MSC-based models of 
sarcomagenesis and to decipher the underlying mecha-
nisms, provide a better understanding about the onset 
and progression of mesenchymal cancer, and lead to 
the eventual development of more specific therapies 
directed against the sarcoma initiating cell.
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