Tratamiento de primera línea para pacientes con mieloma múltiple no elegibles para trasplante autólogo de células progenitoras: revisión sistemática y meta-análisis (estudio del Hemo-ONCOLGroup)

First line therapy for patients with newly diagnosed multiple myeloma ineligible for autologous stem cell transplantation: a systematic review and meta-analysis (Hemo-ONCOLGroup study)

Resumen
Antecedentes: Los pacientes con mieloma múltiple (MM) que no son elegibles para Trasplante de Médula Ósea han sido tratados con melfalán (M) más prednisona (P); sin embargo, el estándar de tratamiento ha cambiado a MP más talidomida (T) debido a un beneficio en supervivencia. Bortezomib (B) y lenalidomida también han surgido como tratamientos efectivos.

Métodos: Se identificaron los ensayos clínicos aleatorizados y controlados (RCT) obtenidos en la Librería Cochrane, PUBMED, LILACS, EMBASE y Scirus. Sólo se consideraron los estudios que compararon melfalán-prednisona (MP) con cualquier otro régimen.

Resultados: Se analizaron 22 RCTs, de 2.159 referencias. MP vs. M más dexametasona (MD): 3 RCT. No hubo diferencias respecto de la supervivencia global (SG), la tasa de respuesta completa (TRC) y la toxicidad hematológica. MD fue superior en respuesta parcial (RR 1.54;1.32-1.80) y toxicidad no hematológica RR 2.15;1.36-3.41. MP vs. regímenes basados en talidomida: 4 RCT. Se encontraron diferencias a favor de la talidomida respecto de la TRC RR 3.44;1.86-6.39 y respuesta parcial (RP) RR 1.67;1.28-2.17. La supervivencia libre de progresión (SLP) fue superior con talidomida (p = 0.02). MP vs. regímenes basados en bortezomib: 1 RCT. Se encontraron diferencias significativas a favor de bortezomib en SG HR 0.61;0.42-0.89, tiempo a la progresión HR 0.48;0.40-0.56, TRC RR 3.44;1.86-6.39 y RP RR 1.30;1.06-1.59. MP vs. quimioterapia sin M: 3 RCT. Los esquemas con bendamustina lograron una mayor respuesta completa RR 2.55;1.22-5.30. MP vs. otros: 13 RCT. No se encontraron diferencias en la RP, SG ni en los efectos adversos.

Conclusiones: Los pacientes sintomáticos con MM no elegibles para trasplante de médula ósea deben recibir como primera línea una combinación de MP con bortezomib o talidomida. Se necesitan más estudios que permitan determinar el beneficio terapéutico basado en el fenotipo y la citogenética.

Palabras clave: mieloma múltiple, quimioterapia, ensayo clínico controlado, revisión sistemática, meta-análisis.
Abstract

Background: Patients with multiple myeloma (MM) not eligible for SCT have been treated with melphalan (M) plus prednisone (P); however, the standard of care has shifted to MP plus thalidomide (T) due to a greater survival benefit. Bortezomib (B) and lenalidomide have also emerged as effective agents.

Methods: Randomized clinical trials (RCT) were identified from the Cochrane Library, PubMed, Lilacs, Embase and Scirus, that compare MP to any other regimen.

Results: Twenty-two trials were included from 2159 potentially eligible references. MP vs. M plus dexamethasone (MD): (3 RCT) MD was superior in partial response (PR) rate and non-hematological toxicity. MP vs. T-based regimens: (4 RCT) significant differences favoring T-based regimens in CR rate, PR rate, and progression-free survival (PFS). MP vs. B based regimens: (1 RCT) Significant differences in OS, TTP, CR rate and PR rate favored B-based regimens according to the EBMT criteria. MP vs. chemotherapy regimens without M: (3 RCT) A significantly higher number of patients treated with BP achieved a CR. TTP was also significantly longer in BP-treated patients (p < 0.02). MP vs. other polychemotherapy regimens: (13 RCT) No significant differences in PR, OS, hematological or other type of toxicity were observed between MP and the other chemotherapy regimens.

Conclusions: Symptomatic MM patients ineligible for SCT should receive as first-line treatment a combination of MP plus B or T, these regimens are associated with improved outcome but greater toxicity compared to MP alone. More homogeneous clinical trials using a cytogenetic risk approach are required.

Key words: multiple myeloma, chemotherapy, randomized controlled trial, systematic review, meta-analysis.

Introduction

Multiple myeloma (MM) is a clonal malignancy characterized by proliferation of abnormal plasma cells that impair hematopoiesis, activate bone resorption, and secrete a monoclonal paraprotein in serum and urine. MM accounts for about 1% of human neoplasms, almost 2% of cancer-related deaths, and 12-15% of hematological malignancies. MM patients with symptomatic disease are usually considered candidates for chemotherapy-based treatment: those who are eligible for high-dose therapy followed by stem cell transplantation (SCT), and those who are ineligible for SCT. Criteria for deciding on eligibility for SCT generally include age, performance status (PS), and co-morbid conditions. There is some variability in these parameters and how they are applied, since studies examining SCT have been carried out with heterogeneous criteria. For example, initial studies tended to include patients younger than 65 years of age, while more recent trials suggest that SCT is safe in a selected group of patients over 70. On the other hand, since patients with poor-risk chromosomal features have a short progression free survival (PFS) after SCT, even younger patients with these alterations may not be candidates for transplantation.

Since the 1960s, the standard of care for patients ineligible for SCT has been melphalan plus prednisone (MP); this regimen has the advantages of an oral, outpatient administration schedule and is generally well-tolerated. Moreover, a classic study demonstrated that while combination chemotherapy tended to induce a more rapid response, and a higher overall response rate (ORR), these differences did not translate into a survival advantage compared to MP. Though MP has been the standard of care for patients with newly diagnosed MM ineligible for SCT, other options include dexamethasone (D) alone and melphalan plus dexamethasone (MD). The Intergroupe Francophone du Myélome (IFM) randomized patients who were 65 to 75 years of age to receive MP, MD, D alone, or D plus interferon. While none of these regimens induced a significant number of complete responses, patients receiving MD had a 70% ORR, defined as achieving at least a partial response (PR), which was significantly higher than that seen with any of the other three regimens; however, MD was also associated with a greater risk of toxicity, especially severe infections. Furthermore, the higher response rate with MD did not translate into either a significantly better median PFS or overall survival (OS).

Thalidomide has also been added to MP (MPT). Recently, Palumbo et al found that newly diagnosed MM patients treated with MPT had a significantly higher ORR and longer PFS, as well as a trend towards longer OS, than those treated with MP. In an updated analysis after a median follow-up of 38 months, median PFS was 21.8 months for MPT and 14.5 months for MP (p = 0.004), median OS was 45 months for MPT and 47.6 months for MP (p = 0.79). Moreover, PFS was longer with MPT regardless of age, serum concentrations of B2-microglobulin, or high International Staging System (ISS). However, MPT failed to show any significant benefit in OS, which
could be due to the administration of new agents, such as bortezomib, after relapse.

Proteasome inhibition with bortezomib is a rational approach for the treatment of MM, and when combined with other drugs, bortezomib has been shown to enhance chemosensitivity and overcome chemoresistance in both preclinical and clinical studies\(^{15-17}\). The Spanish Multiple Myeloma Group (SMMG) carried out a large phase III trial comparing bortezomib plus MP (BMP) to MP. PFS was 24 months for patients receiving BMP, compared to 16.6 months for those receiving MP (\(p < 0.001\)). In the BMP arm, 71% of patients attained a PR and 30% attained a CR, compared to 35% and 4%, respectively, in the MP arm (\(p < 0.001\)). The hazard ratio (HR) for OS was 0.61 for the BMP arm (\(p = 0.008\)). Adverse events were consistent with established toxicity profiles for the BMP and MP regimens\(^{18}\).

In this systematic review and meta-analysis, we assess the evidence from randomized clinical trials comparing MP to some other regimen in order to determine the efficacy and toxicity of different systemic treatments for newly diagnosed MM patients ineligible for SCT.

Methods

Literature search

Relevant randomized controlled trials (RCTs) were identified from the Cochrane Central Register of Controlled Trials (The Cochrane Library 2008, Issue 3), PubMed (1966 to April 2009), Lilacs (1982 to December 2008), Embase (1980 to December 2008) and Scirus (December 2008). A search strategy to locate studies on newly diagnosed MM patients ineligible for SCT was structured and adapted according to each electronic database (Appendix A). Ongoing trials were searched using the following web sites: the International Clinical Trials Registry Platform (ICTRP) search portal (<http://www.who.int/trialsearch/Default.aspx>); the meta-Register of Controlled Trials (<www.controlled-trials.com>); and <http://clinicaltrials.gov/>. Eligible RCTs were included regardless of the language of publication. We also scanned bibliographies of relevant studies for possible references to additional RCTs and searched the abstracts from the annual meetings of the American Society of Clinical Oncology (ASCO), the American Society of Hematology (ASH) and the European Society of Medical Oncology (ESMO) from 1980 onwards. Pharmaceutical firms and authors were also contacted when deemed necessary.

Study selection

Only RCTs comparing MP versus any other regimen for newly diagnosed MM patients ineligible for SCT were considered in the systematic review. We considered all doses and regimens of treatments whether as single agents or in combination therapy. Quasi-randomized and non-randomized controlled studies were excluded. Trials were included based on the independent decisions of at least two reviewers, and any disagreements were resolved by discussion, with referral to a third reviewer if necessary.

Data extraction

At least two reviewers independently extracted the relevant data using a pre-designed data extraction form, and any disagreement was resolved by consensus among all reviewers. Extracted data included the year of publication, patient population, number of patients (by intent-to-treat [ITT] analysis), sample size, sociodemographic details, treatment details (drug, dose, duration), clinical outcomes and main adverse events.

Definitions and outcomes

The primary outcomes were ORR, PFS and OS. In addition, we also considered TTP and the rate of adverse events as secondary outcomes—following the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 3.0—; no further searches for other types of studies were attempted to identify adverse events\(^{19,20}\).

Risk of bias assessment

A risk of bias evaluation of each RCT was done to include details of randomization, allocation concealment, blinded assessment, incomplete outcome data, selective outcome reporting and other issues, in accordance with the guidelines contained in the Cochrane Collaboration handbook\(^{21}\). The tool for assessing risk of bias in each RCT comprises a description and a judgment for each entry in a risk-of-bias table. The judgment for each entry involves answering a question, with “Yes” indicating low risk of bias, “No” indicating high risk of bias, and “Unclear” indicating either lack of information or uncertainty over the potential for bias. A study should
be considered has having a low risk of bias if all key domains were judged as “Yes” and with unclear risk if the reviewers answered “Unclear” for one or more key domains. Additional information included inclusion and exclusion criteria, sample size calculation, and baseline comparability of age, gender, relevant clinical characteristics, diagnosis and duration of complaint.

Description of studies

Of 2159 RCTs screened, 106 assessed the efficacy in terms of OS and PFS and the toxicity of systemic treatment of newly diagnosed MM patients ineligible for SCT (figure 1). Of these, 25 RCTs meeting the inclusion criteria, two were an update of other studies and two were published only as abstracts. Eighty one references were excluded either because they were non-randomized trials or because they did not compare MP versus another regimen. Overall, 19 RCTs were judged to have an unclear risk of bias, mainly because the description of the method used to generate the allocation sequence and/or to conceal the allocation was unclear (Annex 2). The majority of RCTs did not calculate the sample size, which was a potential source of imprecision.

Statistical analysis

To estimate differences between treatments, we pooled the results of RCTs comparing similar treatments and controls and then calculated a weighted treatment effect across the studies. Results were expressed as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and weighted mean differences (WMD) with 95% CIs for continuous outcomes. The generic inverse variance by logHR and SE (logHR) was used for time-to event data. For the pooled analysis, we calculated the I^2 statistic, which describes the percentage of total variation across studies caused by heterogeneity. Low, moderate, and high levels of heterogeneity correspond approximately to I^2 values of 25%, 50% and 75%, respectively. We used the fixed effect model when the I^2 was < 49.9% and the random-effect model when I^2 was ≥ 50%. Available information was summarized and based on ITT whenever possible. Statistical significance was set at p < 0.05. All statistical analyses were performed with Review Manager version 5.0 (RevMan, The Cochrane Collaboration).

Results

Tables 1, 2 and 3 shows the main findings for OS, response rate, hematological and non-hematological toxicity in RCTs included in the review.

MP versus MD

Three RCTs evaluating MP versus MD were included in the analysis. Although no significant differences were observed between the two treatments in OS (3 RCT HR 0.95; 95% CI, 0.82-1.10; I^2, 0%) or hematological toxicity (2 RCTs, 415 patients: RR 1.15; 95% CI, 0.77-1.74; I^2, 24%) a higher PR rate (3 RCTs, 855 patients: RR 1.54; 95% CI, 1.32-1.80; I^2, 17%) with fewer non-hematological toxicities (2 RCTs, 415 patients: RR 2.15; 95% CI, 1.36-3.41; I^2, 46%) was observed in patients treated with MD. However, thrombocytopenia was lower in the MD group in one trial (RR 0.70; 95% CI, 0.54-0.91). A non-significant trend towards a higher rate of severe bacterial infections was also found in patients treated with MD in one RCT (RR 1.90; 95% CI, 0.98-3.65). However, two studies reported that non-hematological

Figure 1. References screened and selected for the systematic review.
Table 1. Main findings for overall survival

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Hazard ratio (95%CI)*</th>
<th>Heterogeneity I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,33,39,39</td>
<td>Combination regimen (MP/MD) + Thalidomide**</td>
<td>MP</td>
<td>0.79 (0.66 - 0.96)</td>
<td>86%</td>
</tr>
<tr>
<td>23</td>
<td>BMP**</td>
<td>MP</td>
<td>0.61 (0.42 - 0.89)</td>
<td>-</td>
</tr>
<tr>
<td>34,36,44,44</td>
<td>MD**</td>
<td>MP</td>
<td>0.95 (0.82 - 1.10)</td>
<td>0%</td>
</tr>
<tr>
<td>42</td>
<td>Chemotherapy regimens without melphalan (prednisone + bendamustine)</td>
<td>MP</td>
<td>1.0 (0.83 - 1.3)</td>
<td>-</td>
</tr>
<tr>
<td>28,33,35,37,38,40,41,43,45</td>
<td>More aggressive chemotherapy regimens</td>
<td>MP</td>
<td>0.95 (0.88 - 1.03)</td>
<td>0%</td>
</tr>
</tbody>
</table>

BMP: Bortezomib/Melphalan/Prednisone; MP: Melphalan/Prednisone; MD: Melphalan/Dexamethasone.

*Hazard Ratio and 95% confidence intervals (CI) were calculated using the generic inverse variance.

**Favoring this intervention.

Table 2. Main findings for response to therapy

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Type of response</th>
<th>Relative risk (95%CI)*</th>
<th>Heterogeneity I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,33,39,46,46</td>
<td>Combination regimen (MP/MD) + Thalidomide**</td>
<td>MP</td>
<td>Complete response</td>
<td>3.44 (1.38 - 8.9)</td>
<td>53%</td>
</tr>
<tr>
<td>23</td>
<td>BMP**</td>
<td>MP</td>
<td>Complete response</td>
<td>8.35 (4.68-14.89)</td>
<td>3.03 (1.06 -1.95)</td>
</tr>
<tr>
<td>34,36,44</td>
<td>MD**</td>
<td>MP</td>
<td>Complete response</td>
<td>0.51 (1.1 - 1.72)</td>
<td>14.3 (1.31 - 1.48)</td>
</tr>
<tr>
<td>34,42,45</td>
<td>Chemotherapy regimens without melphalan</td>
<td>MP</td>
<td>Complete response</td>
<td>0.97 (1.01 - 0.94)</td>
<td>78%</td>
</tr>
<tr>
<td>28,33,35,37,38,40,41,43,45</td>
<td>More aggressive chemotherapy regimens</td>
<td>MP</td>
<td>Complete response</td>
<td>1.06 (0.89 - 1.21)</td>
<td>75%</td>
</tr>
</tbody>
</table>

BMP: Bortezomib/Melphalan/Prednisone; MP: Melphalan/Prednisone; MD: Melphalan/Dexamethasone.

*Relative Risk and 95% confidence intervals (CI) for dichotomous primary outcomes were calculated by the Mantel-Haenszel random-effects model when I² >50%.

**Favoring this intervention.

Table 3. Main findings for hematological and non-hematological toxicity (grade 3-4)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Comparison</th>
<th>RR (95%CI)*</th>
<th>Heterogeneity I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,33,39</td>
<td>Combination regimen (MP/MD) + Thalidomide**</td>
<td>MP</td>
<td>0.79 (0.19 - 3.2)</td>
<td>97%</td>
</tr>
<tr>
<td>23</td>
<td>BMP**</td>
<td>MP</td>
<td>1.11 (0.96 - 1.4)</td>
<td>-</td>
</tr>
<tr>
<td>34,36,44</td>
<td>MD**</td>
<td>MP</td>
<td>1.15 (0.77 - 1.74)</td>
<td>24%</td>
</tr>
<tr>
<td>32,34,35,40</td>
<td>More aggressive chemotherapy regimens</td>
<td>MP</td>
<td>1.23 (0.85 - 1.8)</td>
<td>88%</td>
</tr>
</tbody>
</table>

Hematological toxicity

Non-hematological toxicity

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Comparison</th>
<th>RR (95%CI)*</th>
<th>Heterogeneity I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,33,39</td>
<td>Combination regimen (MP/MD) + Thalidomide**</td>
<td>MP</td>
<td>2.14 (1.88 - 6.55)</td>
<td>0%</td>
</tr>
<tr>
<td>23</td>
<td>BMP**</td>
<td>MP</td>
<td>1.27 (0.96 - 3.37)</td>
<td>-</td>
</tr>
<tr>
<td>34,36,44</td>
<td>MD**</td>
<td>MP</td>
<td>2.15 (1.36 - 3.41)</td>
<td>46%</td>
</tr>
<tr>
<td>32,34,37</td>
<td>More aggressive chemotherapy regimens</td>
<td>MP</td>
<td>1.46 (0.90 - 2.37)</td>
<td>91%</td>
</tr>
</tbody>
</table>

BMP: Bortezomib/Melphalan/Prednisone; MP: Melphalan/Prednisone; MD: Melphalan/Dexamethasone.

*Relative Risk and 95% confidence intervals (CI) for dichotomous primary outcomes were calculated by the Mantel-Haenszel fixed-effects model when I² <50%.

**Favoring this intervention.

toxicity was significantly higher in patients treated with MD, mainly due to infections and hyperglycemia. One RCT found that PFS was 21.1 versus 22.9 months (MD - HR 1.80, 95% CI, -0.71 to -1.33; p < 0.01) and 15.9 versus 23.3 months (p = 0.35), and 1.8 versus 1.9 years (HR 0.88, 95% CI, 0.72-1.07; p = 0.2) for induction therapy and 2.8 versus 2.1 years (HR 0.61, 95% CI, 0.47-0.79; p = 0.0002) for maintenance therapy.

MP versus MPT

Seven studies comparing MP and MPT were identified, one of which was an update of a previously published study. Another trial did not report the number of participants randomized and analyzed in each arm and was excluded from the analysis. A non-significant trend towards longer OS was observed in MPT-treated patients when 4 RCTs were pooled (HR 0.80; 95% CI, 0.53-1.20; p, 84%); however, the patients included in the four trials were very heterogeneous, which may have skewed the results (figure 2a). When one RCT was excluded, a significant difference in OS favoring MPT was found (HR 0.80; 95% CI, 0.53-1.22; p, 0%). When five RCTs, with a total of 1335 patients, were pooled, higher CR (RR 3.75; 95% CI, 2.07-6.77; p, 40%) (figure 2b) and PR rates (RR 1.72; 95% CI, 1.37-2.15; p, 70%) were attained with
MPT13,29,34,41,44.

In four RCTs, median PFS was significantly higher in patients treated with MPT (HR 0.51; 95\%CI, 0.35-0.75)13, 17.8 versus 27.5 months (HR 0.45; p < 0.0001)29, 24.1 versus 18.5 months (HR 0.62; p = 0.001)44, and 10 versus 13 months (p < 0.02)41. Conversely, in a fifth trial, median PFS was 16.7 and 20.7 months for the TD and MP groups, respectively (HR 1.30; 95\% CI, 0.95-1.78)34. The proportion of patients without progressive disease at 12 and 24 months was 59\% (95\% CI, 51-68\%) and 41\% (95\% CI, 33-51\%) for those treated with TD and 63\% (95\% CI, 55-72\%) and 48\% (95\% CI, 40-58\%) for those treated with MP34.

In three RCTs with a total of 860 patients, no significant differences were found in grade 3-4 hematological toxicities (RR 0.79; 95\% CI, 0.19-3.29; I2 97\%); however, greater differences were observed in non-hematological toxicities (RR 2.14; 95\% CI, 1.80-2.55; I2 0\%)13,29,34. Thrombosis/embolism was significantly higher in the MPT group in four RCTs with 1069 patients (RR 2.69; 95\% CI, 1.68-4.33; I2 3\%)13,29,34,44. However, no significant difference was found between the two treatment groups in the two RCTs, with 523 patients, with available data on pulmonary embolism (RR 1.68; 95\% CI, 0.30-9.35; I2 29\%)13,34 (figure 3a). Finally, in four trials with a total of 1069 patients, peripheral neuropathy was significantly higher in the MPT group (RR 5.05; 95\% CI, 1.33-19.16; I2 63\%)13,29,34,44.

MP versus BMP

Only one RCT, including 668 patients, assessed BMP compared to MPT18. Both OS and PFS were longer in the BMP group (OS: HR 0.61; 95\% CI, 0.42-0.89; PFS: HR 0.48; 95\% CI, 0.41-0.56). According to the EBMT (European Group for Blood and Marrow Transplantation) criteria, higher rates for both CR and PR were also attained with BMP (CR: RR 8.35; 95\% CI, 4.68-14.89; p = 0.0001; PR: RR 1.30; 95\% CI, 1.06-1.59; p = 0.01), while according to the International Uniform Response Criteria (IURC), only CR rate was higher for BMP (RR 8.39; 95\% CI, 4.82-14.60; p = 0.00001). The median duration of response was 19.9 months for the BMP group and 13.1 months for the control MP group (p = ns). The median duration of response among patients attaining a CR was 24.0 months in the BMP group and 12.8 months in the MP group (no p value reported). No significant differences were found between the two groups regarding death during treatment (5\% and 4\% respectively), treatment-related deaths (1\% and 2\%), overall grade 3-4 toxicities (RR 1.27; 95\% CI, 0.68-2.37) or grade 3-4 hematological toxicity (RR 1.15; 95\% CI, 0.86-1.44). Anemia was significantly reduced in patients treated with BMP (RR 0.72; 95\% CI, 0.56-0.92); however, grade 3-4 peripheral sensory neuropathy (RR 88.22; 95\% CI, 5.45-1426.63) and herpes zoster infections (RR 3.19; 95\% CI, 1.78-5.69) occurred more frequently in the BMP group. An update of the study43, with a median follow-up of 25.9 months, recently reported a median time to next treatment of 28.1 versus 19.2 months (HR 0.53; p < 0.000001), a treatment-free interval of 16.6 versus 8.4 months (HR 0.54; p < 0.000001), and a 3-year OS rate of 72\% versus 59\%, for the BMP and MP groups, respectively. The BMP group had a 36\% reduced RR of death compared to the MP group (HR 0.644; p = 0.0032). Overall grade 3-4 adverse events and severe adverse events were similar.
in the two groups (RR 1.13; 95% CI, 0.94-1.36; p = 0.19 and RR 1.19; 95% CI, 0.83-1.71; p = 0.35). Peripheral neuropathy (all grades) was significantly higher in the BMP group (RR 88.22; 95% CI, 5.15-1477; p = 0.002) but improved over time in 79% of cases by a median of 1.9 months; 60% of neurotoxic adverse events were resolved within a median of 5.7 months.

MP versus other chemotherapy regimens without melphalan

Only three studies, including a total of 860 participants, did not include melphalan in the second chemotherapy regimen.29,37,40 One study compared MP to dexamethasone or dexamethasone plus IFN-α2b72; another compared MP to prednisone plus bendamustine77; and the third compared MP to VMCP and BCNU.40 When the three studies were pooled, no significant difference between groups was found in the CR rate (RR 0.99; 95% CI, 0.10-9.46; P, 78%). After the first interim analysis, the regimen with dexamethasone was discontinued in the first study.40 The study comparing prednisone plus bendamustine to MP77 found no significant difference in OS between the two groups (HR 1.0; 95% CI, 0.58-1.73). However, a significantly higher number of patients treated with prednisone plus bendamustine achieved a CR compared to those receiving MP (RR 2.55; 95% CI, 1.22-5.30). Time to disease progression was also longer in patients treated with prednisone plus bendamustine (14 versus 10 months; p < 0.02). Frequency of anemia, leucopenia and thrombocytopenia were similar in the two groups.

The study comparing MP to dexamethasone-based therapies found no significant differences in OS or in the CR and PR rates at 6 months among the three treatment groups29; however, the MP group had less grade 3-4 non-hematological toxicity than dexamethasone alone (RR 1.70; 95% CI, 1.05-2.76) and dexamethasone plus IFN-α2b (RR 1.67; 95% CI, 1.02-2.74).

MP versus more aggressive chemotherapy regimens

Thirteen RCTs, including 3736 patients and 17 different treatment arms, compared more aggressive chemotherapy regimens to MP13-28,30,32,33,35,36,38,40. The meta-analysis of all these studies found no significant differences in PR rates between MP and the other chemotherapy regimens (RR 1.06; 95% CI, 0.49-2.41; P^2, 75%). A subgroup analysis of seven RCTs, including a total of 1458 patients, comparing MP to regimens containing vincristine, melphalan, cyclophosphamide and prednisone or vincristine, BCNU, Adriamycin and prednisone also found no significant differences in PR rates (RR 1.14; 95% CI, 0.96-1.36; P, 53%).24,25,30,32,35,38,40

Results of a subgroup analysis of five of the RCTs, with 1395 patients, were similar (RR 1.09; 95% CI, 0.83-43; P^2, 83%).23-25,35,38 In addition, there was no difference in OS, either when all 13 RCTs were pooled or in either of the two subgroup analyses (HR 0.95; 95% CI, 0.88-1.03; P, 0%). A significant difference in OS was found in one study comparing MP with reduced-intensity SCT with melphalan (HR 0.74; 95% CI, 0.56-0.97).28

When pooling four RCTs, with 1236 patients, no significant differences were observed in grade 3-4 hematological toxicity (RR 1.23; 95% CI, 0.85-1.80);27,28,30,35 Similarly, when three RCTs, with 1218 patients, were pooled, no differences were observed in grade 3-4 non hematological toxicity (RR 1.46; 95% CI, 0.90-2.37);27,28,32 However, both hematological and non-hematological grade 3-4 toxicities were significantly higher in the group receiving reduced-intensity SCT with melphalan.28

Discussion

The introduction of SCT has represented a major step forward in treating MM. However, this progress has been limited to patients aged less than 65-70 years, and MP has remained the gold standard for elderly patients during the past three decades.130-134 This situation may change in coming years with the introduction of novel drugs targeting the myeloma cell and its bone marrow microenvironment, such as thalidomide, other immunomodulatory drugs and bortezomib.10 We have evaluated the effects of intervention in five groups: MP versus MD, MP versus MPT, MP versus BMP, MP versus other chemotherapy regimens without melphalan, and MP versus more aggressive chemotherapy regimens.

Our review identified three RCTs comparing MP to MD. Pooled data showed a significantly higher PR rate in the MD group; however, non-hematological toxicities were also higher with MD, with an increased rate of infections and hyperglicemia, and no differences in OS were observed, perhaps due to early mortality from non-myeloma-related causes. Since MD causes...
higher morbidity rates, these results have led investigators to reject MD as a new standard therapy.

Six studies included thalidomide-based regimens for treating MM patients who were ineligible for SCT, one of which was an update of a previously published study. The thalidomide-based regimens had higher ORR rates in four of these studies, and longer PFS in three. Although OS was also longer in three of the studies, this finding must be interpreted with caution since the studies were quite heterogeneous, due to the wide variety of thalidomide doses (100 to 400 mg/d), the non-universal use of thalidomide as maintenance therapy until disease progression, and the wide range of chemotherapy cycles used in combination with thalidomide (6 to 12 cycles). In fact, the use of thalidomide as induction and maintenance therapy has been shown to lead to acquired resistance to this agent.

We found that non-hematological toxicities, mainly thromboembolic defects and peripheral neuropathy, were more frequent in patients receiving thalidomide. Along these same lines, a meta-analysis of trials using thalidomide-based therapy described a 9% (95% CI, 6-13%) absolute increase in risk of venous thromboembolic events and a number needed to harm (NNH) of 11 (95% CI, 8-17); moreover, in six of ten RCTs using thalidomide as induction therapy, no difference was attributable to the non-use of thromboembolic prophylaxis. The same meta-analysis examined 13 RCTs, with 4144 previously untreated MM patients; nine of these trials evaluated induction therapy and reported a significant improvement in progression endpoints with thalidomide. However, only two of the trials detected significant improvements in OS. The pooled HR for OS was 0.67 (95% CI, 0.56-0.81) when thalidomide was added to standard non-transplantation therapy, with a negative test for heterogeneity. The weighted RR for response to a thalidomide-containing-regimen was 1.5, which translates to an absolute reduction in the risk of having less than a 24% PR. This suggests that an average of four patients (95% CI, 3-6) need to be treated with thalidomide in order to obtain one additional response. The weighted RR for a CR to induction thalidomide was 2.82.

Only one study compared MP to BMP and found improved ORR, PFS and OS with BMP. This recent study was closed prematurely based on favorable results, and updated results were reported after a longer median follow-up of 25.9 months. The update confirmed that BMP was associated with a 36% reduction in the risk of death, with median OS not reached in either arm. Furthermore, BMP showed efficacy regardless of poor prognostic characteristics, including cytogenetic analysis (high-risk defined as t[4;14], t[14;16], del[17p]) by FISH. The update also evaluated response to subsequent therapies, including bortezomib retreatment. Importantly, BMP-treated patients were able to respond to bortezomib-based salvage and immunomodulatory drug-based rescue therapy in similar proportions to patients receiving only MP. This suggests that the initial use of proteasome agent combinations does not necessarily result in significant resistance at a later date.

Three studies did not include melphalan in their schedules; there were no differences in ORR or in OS rates in the group of patients who were treated with dexamethasone or bendamustine without melphalan; nevertheless, there was a higher CR rate and PFS in those receiving bendamustine. The 13 trials using more aggressive chemotherapy regimens were carried out several decades ago and reported no improvement in any of the outcomes compared to MP, thus further demonstrating that adding more agents does not necessarily offer any advantages. These findings were similar to those previously reported by the Myeloma Trialists Collaborative Group, who described a non-significant difference in OS between patients allocated to combination chemotherapy or MP. The estimate for proportional reduction in the annual odds of death is 1.5% in favor of combination chemotherapy, but the 95% CI for this reduction ranges from an 8% benefit for chemotherapy to a 5% benefit for MP; these results correspond to an absolute 1% difference in OS at 3 years.

Lenalidomide was not included in our analysis because no RCTs have compared it to MP; however, this novel component seems to offer some advantages over thalidomide, especially in terms of neurotoxicity and ORR. The Eastern Cooperative Oncology Group (ECOG) E4A03 phase III trial randomized 445 patients with newly diagnosed MM to lenalidomide plus high-dose dexamethasone (RD) or lenalidomide plus low-dose dexamethasone (Rd). The primary analysis demonstrated a higher ORR
with the high-dose than with the low-dose regimen (79% vs. 69%), but the difference did not reach the predefined ORR of 15% for the low-dose arm. In contrast, the 2-year OS rate for the low-dose arm was 88%, compared to 78% in the high-dose arm ($p = 0.007$). In fact, these results allowed the study to be closed prematurely. The encouraging data obtained with lenalidomide will provide the basis for new RCTs, which may lead to its use in patients ineligible for SCT. MP thus continues to be the backbone of treatment for patients not eligible for SCT although newer combinations may improve results and should be considered as part of standard therapy. Our conclusions are supported by the guidelines for the management of MM patients ineligible for standard high-dose chemotherapy with autologous SCT recently published by the International Myeloma Working Group.

Quality of the evidence

Our systematic review and meta-analysis was based on RCTs reported in the literature or presented at major international cancer or hematology conferences. As such, the study has a number of important limitations. Firstly, it is vulnerable to publication bias, nevertheless, the funnel plot decline this observation (see Annex 3). We attempted to minimize the potential impact of publication bias by including large and well-designed search strategies, but negative trials or studies conducted in developing countries may have been inadvertently excluded. Since our analysis was limited to published data, in some cases, we had incomplete information. Our integrative review was based on aggregating study and sub-study data, not on individual patient information. As a result, our time-to-event analysis was limited and it was not possible to explore whether patient factors contributed to the statistical heterogeneity we observed in some of the outcome analyses. Finally, the quality of a meta-analysis is always subject to the studies included in the review. All our included studies were opened and only four RCTs had a low risk of bias; the other 18 trials were judged to have an unclear risk of bias, mainly because the description of the method used for generating the allocation sequence and/or concealing the allocation was unclear. The absence of blinding had minimal relevance for the analysis of outcomes such as OS or PFS but may have affected adverse event rates. Furthermore, most RCTs did not calculate sample size, which represents a potential source of imprecision, and some of the studies reported preliminary results for which it was impossible to obtain predefined statistical parameters.

Acknowledgments

This study was supported by an independent grant (009-2008) from the Foundation for Clinical and Translational Cancer Research (FICMAC) (Bogotá, Colombia). FICMAC had no such involvement on the text. We thank Mrs. Renée O’Brate for helpful comments and editorial support.

Statement of authors’ contributions

- Study proposal (all authors),
- Search strategy (LR, AFC),
- Selection of studies to include (MLR, JFC, CPC, CA, LR, JB, AFC),
- Assessment and extraction of data from RCTs (MR, JFC, CPC, CA, LR, JB),
- Third assessor when necessary (AFC, HAB),
- Summary and analysis of data (LR, JB, AFC),
- Interpretation of data (MLR, JFC, CPC, CA, LR, JB, AMC, AFC, HAB),
- Critical review (MLR, AFC, HAB),
- Writing and approval of final review (all authors).
Annex 1. Characteristics of RCTs included in the review

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1993</td>
<td>Naive patients with MM diagnosis according to the Chronic Leukemia Myeloma Task Force (1973). Patients with asymptomatic disease were excluded.</td>
<td>MP alternating with VCP/VBAP (courses administered at 4-weeks intervals).</td>
<td>Evaluation of response was made after eight cycles of chemotherapy. Response was defined as a reduction of 50% or more of the monoclonal component, improvement in PS by at least two grades, and a decrease greater than 50% in measured cross-sectional area of plasmacytomas. Furthermore, the size and number of lytic bone lesions must not have increased; and there also must have been correction of hypercalcemia (<11.5 mg/dL), anemia (> 9 g/dL), and hyperbuninemia (> 3 g/dL). Those patients who fulfilled all of the above criteria but who had a less than 50% reduction of M-component were considered to have had a partial response. When the criteria for objective or partial response were not accomplished, the case was considered as a treatment failure. Relapse was defined as an increase greater than 50% from the lowest level of serum M-component achieved with the initial therapy, an increase in size or number of lytic bone lesions, and development of extracranial plasmacytomas, anemia, or hypercalcemia.</td>
</tr>
<tr>
<td>Boccadoro 1991</td>
<td>Naive patients with MM diagnosis according to the SWOG criteria. MM was classified using the Duke and Salmon staging system.</td>
<td>VCMP/VBAP (induction treatment was administered at 28-day intervals for 12 months).</td>
<td>Response was defined as a reduction of 50% or more in the M-component. Relapse was defined as an increase greater than 100% from the lowest level of serum M-component, or a rise in the size or number of lytic bone lesions. Progression was regarded as failure for never-responding population as an increase greater than 25% in the M-component or an increase in size or number of lytic bone lesions during induction treatment.</td>
</tr>
<tr>
<td>Cavu 2002</td>
<td>Naive patients with MM diagnosis according to the Chronic Leukemia Myeloma Task Force (1973). Patients were eligible for randomization if they had symptomatic MM and measurable M-protein in the serum and/or urine. Reasons for exclusion included age >80 years, severe heart disease, hepatic dysfunction or priority of history of another neoplasm. Patients with smoldering myeloma, localized plasmacytoma or plasma cell leukemia were also excluded.</td>
<td>MP, VAD</td>
<td>Response was evaluated according to the criteria of the Chronic Leukemia Myeloma Task Force and was based on M-protein decrease at the end of induction chemotherapy as compared with pretreatment values. An objective response was defined by a decrease in serum or urinary M-protein concentration of at least 50% or 75%, respectively, without other evidence of progression. Patients who achieved only a 25% to 50% decrease in serum M-protein level or at least 50% reduction in 24-hour excretion of urinary light chains were considered as having a minor response. Stable disease, or no change, included less than 25% decrease in serum M-protein level or less than 50% reduction in Bence Jones proteinuria. Progression was defined as a confirmed increase in M-protein concentration of more than 25% above pretreatment values and/or an increase in size or number of lytic bone lesions either during or after completion of induction chemotherapy.</td>
</tr>
<tr>
<td>Cooper 1986</td>
<td>The diagnosis of MM was established according to the criteria of the Chronic Leukemia-Myeloma Task Force. Any patient who had received prior chemotherapy and prior radiation treatment of symptomatic lesions was allowed if the field did not exceed 150 cm² and if the course of treatment was completed before protocol entry.</td>
<td>MGBP (repeated every 42 days)</td>
<td>Complete response was defined as a reduction of serum or urinary M-protein to 50% of the initial value, healing of bone lesions, or 50% decrease in the area of measured soft tissue lesions. Indirect responses included improvement in hemoglobin level, creatinine, serum calcium, PS, or pain.</td>
</tr>
</tbody>
</table>
TRATAMIENTO DE PRIMERA LÍNEA PARA PACIENTES CON MIELOMA MÚLTIPLE NO ELEGIBLES PARA TRASPLANTE AUTÓLOGO DE CÉLULAS PROGENITORAS: REVISIÓN SISTEMÁTICA Y META-ANÁLISIS (ESTUDIO DEL HEMO-ONCOLGROUP)

Myriam Rodríguez, Juan Felipe Combariza, Claudia Patricia Casas, Ludovic Reveiz, Jefferson Buendía, Arturo Martí-Carvajal, Henry Becerra, Andrés Acevedo, Andrés Felipe Cardona

Interventions
Methods
Outcomes
RCT, multicenter, parallel, open label.

N = 164
MP
83
DEX
51
MVP
30

4 MP courses were administered at 6-week intervals for 12 cycles. The neutrophil count must have reached 1.5x10^9/L and the platelet count 100x10^9/L before full-dose chemotherapy was given. A 50% melphalan reduction was performed if the neutrophil count was between 1.0x10^9/L and 1.5x10^9/L, or the platelet count between 50x10^9/L and 100x10^9/L.

b. DEX
On 12 cycles. The dose could be reduced by 50% (20 mg/2) in case of toxicity.

c. M-DEX
The doses of melphalan and dexamethasone and dose adjustments for side effects were the same as those presented for the MP and dexamethasone regimens.

d. DEX-FN
IFN was permanently discontinued in the case of an emergence of cardiac dysfunction or an occurrence of seizures or psychiatric complications. Protocol doses of IFN were reduced by 20% to 50% in patients who experienced significant fatigue or other symptoms suggesting significant toxicity. The dose was subsequently reescalated if this was feasible.

Facon 2003
Facon 2006
Hansen 1985
Hernandez 2004
Hort 1990

Overall survival, progression-free survival, survival after progression and toxicity.

Complete response: absence of the original monoclonal protein in serum and urine by immunofixation, less than 5% plasma cells in a bone-marrow aspirate, disappearance of soft tissue plasmacytomas.

Progressive disease: more than 25% increase in serum monoclonal protein, 50% increase in the 24-hour urinary light chain excretion, increase in the size of new bone lesions or soft-tissue plasmacytomas, hypercalcemia not attributable to any cause other than MM.

Best response at 12 months: the highest amount of disease improvement achieved by a patient, except if progressive disease had occurred during that period without response assessment at 12 months (between 9 and 15 months).

All previously untreated patients with a confirmed diagnosis of MM were eligible. Diagnostic criteria for MMA: a) more than 3% atypical plasma cells in a bone marrow smear combined with b) at least 1 of the following 3 criteria: (i) an M-component in serum in a high concentration or (ii) excretion of light chains in the urine > 0.5 g/24 h, or (iii) osteolytic bone lesions.

Response: a decrease in M-component concentration in serum or urine of 75% or more; the osteolytic lesions must not have enlarged > 25% or increased in number, the serum calcium concentration must have remained normal and a decrease of 25% or a normalization of an increased serum creatinine and a 25% increase or a normalization of HB.

Hematologic response: complete response, partial response, stable disease, and progressive disease.

MMP
b. MP
MP
MP
MP
MP

Overall survival, progression-free survival, survival after progression and toxicity.

Response rate, event-free survival, overall survival and toxicity. Those patients who showed disappearance of the M-component by electrophoresis and <5% plasma cells in bone marrow were considered complete responders.

All patients between 65 and 75 years and fulfilling a diagnosis of stage II or III MM according to the Durie and Salmon criteria, or stage II MM patients if they met one of the criteria defining high-risk stage I patients. If younger, were included if they were ineligible for high-dose treatment (Exclusion criteria: previous history of another neoplasm (except basalcellular cutaneous or cervical epitheloma), primary or associated amyloidosis, a WHO performance index of 3 or greater, or unrelated to MM, substantial renal insufficiency with creatinine serum concentration of 50 mg/mL or more, cardiac or hepatic dysfunction, peripheral neuropathy, or infection with HIV or hepatitis B or C.

Response: a decrease in M component in serum or urine of 50% or more; a decrease in size or number of osteolytic lesions of at least 25%.

Study	Participants	Interventions	Outcomes
Facon 2003 | RCT, multicenter, parallel, open label. N=104. (Patients were randomized to receive MP, M-DEX, DEX, or DEX-FN in a 1:1:1:1 ratio). Following the interim analysis, the data safety monitoring board (DSMB) recommended stopping enrollment in the DEX arm based on a striking disadvantage in terms of progression-free survival (P = 0.001) of DEX as compared with M groups (MP and M-DEX) and a trend on OS (P = 0.3). | Patients aged between 65 and 75 years and fulfilling a diagnosis of stage II or III MM according to the Durie and Salmon criteria, or stage II MM patients if they met one of the criteria defining high-risk stage I patients. If younger, were included if they were ineligible for high-dose treatment (Exclusion criteria: previous history of another neoplasm (except basalcellular cutaneous or cervical epitheloma), primary or associated amyloidosis, a WHO performance index of 3 or greater, or unrelated to MM, substantial renal insufficiency with creatinine serum concentration of 50 mg/mL or more, cardiac or hepatic dysfunction, peripheral neuropathy, or infection with HIV or hepatitis B or C. | Overall survival, progression-free survival, survival after progression and toxicity.

Hansen 1985 | RCT | N = 104
MP = 33
MVPP = 32
VBCMP = 31 | All previously untreated patients with a confirmed diagnosis of MM were eligible. Diagnostic criteria for MMA: a) more than 3% atypical plasma cells in a bone marrow smear combined with b) at least 1 of the following 3 criteria: (i) an M-component in serum in a high concentration or (ii) excretion of light chains in the urine > 0.5 g/24 h, or (iii) osteolytic bone lesions. | Response: a decrease in M-component concentration in serum or urine of 75% or more; the osteolytic lesions must not have enlarged > 25% or increased in number, the serum calcium concentration must have remained normal and a decrease of 25% or a normalization of an increased serum creatinine and a 25% increase or a normalization of HB.

Hernandez 2004 | RCT, multicenter, open label. Only 170 (87 MP and 83 DEX) patients were evaluable for response. | Diagnóstico de la neoplasia múltiple de células B (MMP): a) Estudio de la prueba de sorbitol mediante la prueba de la fosfatasa alcalina (PASFA) en el medio óseo, b) Examen radiográfico del hueso. | Response: hematologic response, overall survival and toxicity. Those patients who showed disappearance of the M-component by electrophoresis and <5% plasma cells in bone marrow were considered complete responders.

Hort 1990 | RCT, multicenter. N = 164MP = 85 Multidrug chemotherapy (MDC) = 79 | Inclusion criteria: (A) Serum M-protein concentration above 2.5 g/L, (B) Non-plasmacytic myeloma and (C) Osteolytic bone lesions. A diagnosis of MM was accepted if criteria A+B or A+C were fulfilled. | Response remission: 50% reduction of the initial M-protein concentration.

N = 104
MP = 33
MVPP = 32
VBCMP = 31

Overall survival, progression-free survival, survival after progression and toxicity.

Response: a decrease in M component in serum or urine of 50% or more; a decrease in size or number of osteolytic lesions of at least 25%.

All patients aged between 68 and 75 years and fulfilling a diagnosis of stage II or III MM according to the Durie and Salmon criteria, or stage II MM patients if they met one of the criteria defining high-risk stage I patients. If younger, were included if they were ineligible for high-dose treatment (Exclusion criteria: previous history of another neoplasm (except basalcellular cutaneous or cervical epitheloma), primary or associated amyloidosis, a WHO performance index of 3 or greater, or unrelated to MM, substantial renal insufficiency with creatinine serum concentration of 50 mg/mL or more, cardiac or hepatic dysfunction, peripheral neuropathy, or infection with HIV or hepatitis B or C.

Response: a decrease in M-component concentration in serum or urine of 75% or more; the osteolytic lesions must not have enlarged > 25% or increased in number, the serum calcium concentration must have remained normal and a decrease of 25% or a normalization of an increased serum creatinine and a 25% increase or a normalization of HB.
<table>
<thead>
<tr>
<th>Estudio</th>
<th>MÉTODOS</th>
<th>PARTICIPANTES</th>
<th>INTERVENCIONES</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kildahl-Andersen 1988</td>
<td>RCT, multicenter</td>
<td>N = 92 MPCVM = 48 MP² = 44</td>
<td>a. VCCM
b. MP²</td>
<td>Median Survival, time to relapse, duration of remission, Response rate.</td>
</tr>
<tr>
<td>Ludwig 2008</td>
<td>RCT, multicenter, open label N = 269 TD = 145 MP² = 144 19 and 15 withdrawals respectively occurred during follow up.</td>
<td>Previously untreated active MA not eligible for autologous transplantation with Durie Salmon stage II and III, and stage I on high risk. Exclusion criteria: Extramedullary or solitary plasmacytoma without evidence of dissemination of disease or with smouldering myeloma, with more than 3 irradiation fields, congestive heart failure (NYHA II and IV), acute infection, uncontrolled medical condition.</td>
<td>a. TD: standard doses on odd cycles and same dose added on day 15 – 18 on even cycles of 28 days.
b. MP²: during a 28 to 42 day cycle.</td>
<td>Progression-free survival, tolerance, response rates, time to response, overall survival. Evaluation of response, the EBMT criteria: Disappearance of myeloma protein in serum and urine by immunofixation maintained for a minimum of 6 weeks, <5% plasma cells in bone marrow, no increase in lytic bone lesions, disappearance of soft tissue plasmacytomas. Progression of the disease: A greater than 25% increase in serum paraprotein concentration and in 24 hour urinary paraprotein excretion, >25% increase in plasma cells, progressive bone disease, hypercalcemia not attributable to other causes than myeloma.</td>
</tr>
<tr>
<td>Ostergaard 1989</td>
<td>RCT, multicenter</td>
<td>N = 86 MP = 44 VCMP/VMBAP = 42 Patients with MM stage III. Diagnosis: When at least two of following criteria were met: 1. A monoclonal immunoglobulin peak with a subnormal concentration of at least one non-monoclonal immunoglobulin class (IgG, IgA and IgM). 2. >10% plasma cells in the bone marrow. 3. Osteolytic and or osteoplastic bone lesions compatible with MM.</td>
<td>a. VCMP alternating every 3 weeks with VMBAP. When response was achieved, interval between the cycles was prolonged to 6 weeks.
b. MP² administered at 6 weeks interval, continued until progression or relapse.</td>
<td>The criteria for response were those adopted by the Chronic Leukemia-Myeloma Task Force 1973.</td>
</tr>
<tr>
<td>Pakurobo 2006</td>
<td>RCT, multicenter</td>
<td>N = 129 MP² = 126 10 withdrawals (7 lost to follow up in MP²) Inclusion criteria: previously untreated MM patients older than 65 years (or younger but unable to undergo transplantation), Durie and Salmon stage II or III myeloma, and measurable disease. Exclusion criteria: another cancer, psychiatric disease and any grade 2 peripheral neuropathy.</td>
<td>a. MP² every 4 weeks for six cycles. In this group, patients who had progressive disease or relapse were permitted to crossover to receive thalidomide as salvage treatment.
b. MP² every 4 weeks for six cycles.</td>
<td>Clinical response rates, event-free survival, overall survival, prognostic factors, time to the first evidence of response, incidence of any grade 3 or higher adverse events. Response criteria of the European Group for Blood and Marrow Transplantation/International Bone Marrow Transplant Registry were used.</td>
</tr>
<tr>
<td>Pakurobo 2008</td>
<td>RCT, multicenter</td>
<td>N = 331 MP² = 167 MP = 164 Patients with previously untreated MM who were older than 65 years or younger not candidates for transplant, Durie and Salmon stage II or III MM with measurable disease.</td>
<td>a. MP²: every 6 weeks for six cycles. The dose of Thalidomide was reduced by 50% on the occurrence of any non-hematologic grade 2 toxicity and was discontinued for any non-hematologic grade 3 toxicity. Enoxaparin 40 mg day was given subcutaneously during the first 4 cycles of therapy, as anticoagulation prophylaxis.
b. MP²: every 6 weeks.</td>
<td>Response rates, progression-free survival, overall survival, prognostic factors and adverse events. Response to treatment: Criteria of European Group for Blood and Marrow Transplantation/International Bone Marrow Transplant Registry.</td>
</tr>
<tr>
<td>Paskov 1984</td>
<td>RCT</td>
<td>N = 234 previously untreated patients: MP = 129 MPCVM = 105 239 untreated patients with MM</td>
<td>a. MP²: MPCVM²</td>
<td>Good response: reduction of >50% in serum M-protein concentration or >75% in urinary M-protein excretion and a decrease of >50% in measured cross-sectional area of a plasmacytoma. Partial response: decrease of <50% in serum and/or <75% in urinary M-protein with an increase in haemoglobin in the absence of blood transfusion and performance status.</td>
</tr>
</tbody>
</table>
Study

<table>
<thead>
<tr>
<th>Study</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponsich 2006</td>
<td>RCT</td>
<td>BP = 68</td>
<td>a. MP1</td>
<td>Complete remission: decline in serum myeloma protein by >75% to < 25 g/l, reduction in 24-hr urinary protein by >0% to < 200 mg/24 h, no increase in skeletal destruction, serum calcium within normal range, no blood transfusion required in the previous 3 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2 = 63</td>
<td>b. BP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Randomization was stratified according to the stage of the disease.</td>
<td>Treatment with MP2 or BP2 was administered every 28 days until maximum remission or disease progression was observed.</td>
<td></td>
</tr>
<tr>
<td>Salmon 1983</td>
<td>RCT</td>
<td>N = 237</td>
<td>Three arms: a. Alternating combination of VCMP2 and VCAP</td>
<td>SWOG criteria objective remission status: At least a 75% reduction in the rate of M-component production and tumor burdens, and improvement in other response criteria (e.g., anemia and hypercalcemia).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. VCMP2 and VCAP2 = 160</td>
<td>b. A syncopated alternation of three cycles of VCMP2 followed by three cycles of VBMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. MP2</td>
<td>c. MP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Randomization was stratified according to baseline levels of β2-microglobulin.</td>
<td>Of those patients evaluable for response to induction therapy, 160 were randomized to alternating combination therapy (80 to VCMP2 + VCAP2 and 80 to VCMP2 + VBMP) and 77 to MP2. Patients who had achieved remission were then randomized to maintenance treatment with VCMP alone or in combination with Levasimole 100 mg/m2 PO on days 6, 7, 13, and 14 of each cycle of VCMP2 chemotherapy.</td>
<td></td>
</tr>
<tr>
<td>San Miguel 2008</td>
<td>RCT, multicenter, open label.</td>
<td>N = 682</td>
<td>a. MP3 every 6 weeks.</td>
<td>Time to disease progression, rate of complete response, duration of response, time to subsequent myeloma therapy, overall survival.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. MP3 = 344, MP3 = 338</td>
<td>b. MP3 every 6 weeks plus Bortezomib 1.3 mg/m3, by intravenous bolus on days 1, 4, 8, 11, 22, 25, 29, and 32 during cycles 1 to 4 and on days 1, 8, 22, and 29 during cycles 5 to 9.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment with Desamethasone = 292</td>
<td>Randomization was stratified by the stage of the disease.</td>
<td>Patients who did not demonstrate disease progression after completing induction therapy were, as per their initial allocation, either observed or received dexamethasone 40 mg per day for 4 days every 28 days.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observation = 147</td>
<td>Dexamethasone = 145</td>
<td>Patients were to receive twelve 28-day cycles of therapy. Doses were attenuated or deleted according to treatment-related toxicities.</td>
<td>Overall survival, response to treatment, progression-free survival, treatment-related toxicity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patients who did not demonstrate disease progression after completing induction therapy were, as per their initial allocation, either observed or received dexamethasone 40 mg per day for 4 days every 28 days.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patients who did not demonstrate disease progression after completing induction therapy were, as per their initial allocation, either observed or received dexamethasone 40 mg per day for 4 days every 28 days.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patients who did not demonstrate disease progression after completing induction therapy were, as per their initial allocation, either observed or received dexamethasone 40 mg per day for 4 days every 28 days.</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **DEX**: Dexamethasone
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **SWOG**: Southwest Oncology Group
- **MM**: Multiple Myeloma
- **MM**: Multiple Myeloma
- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **DEX**: Dexamethasone
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **SWOG**: Southwest Oncology Group
- **MM**: Multiple Myeloma
- **MM**: Multiple Myeloma
- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **DEX**: Dexamethasone
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **SWOG**: Southwest Oncology Group
- **MM**: Multiple Myeloma
- **MM**: Multiple Myeloma
- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **DEX**: Dexamethasone
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **SWOG**: Southwest Oncology Group
- **MM**: Multiple Myeloma
- **MM**: Multiple Myeloma
- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **DEX**: Dexamethasone
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **SWOG**: Southwest Oncology Group
- **MM**: Multiple Myeloma
- **MM**: Multiple Myeloma
- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **DEX**: Dexamethasone
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
- **VBMP**: Verdelix, bortezomib, melphalan, prednisone
- **SWOG**: Southwest Oncology Group
- **MM**: Multiple Myeloma
- **MM**: Multiple Myeloma
- **BP**: Bortezomib
- **MP**: Melphalan
- **VCMP**: Verdelix, cyclophosphamide, melphalan, prednisone
- **VCAP**: Verdelix, cyclophosphamide, doxorubicin, prednisone
<table>
<thead>
<tr>
<th>Study</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribulio 1985</td>
<td>RCT</td>
<td>N = 133 previously untreated MM patients</td>
<td>a. MP+ = 149</td>
<td>a. MP+ every 4 weeks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. MP+ plus Thalidomide = 152</td>
<td>b. MP+ every 4 weeks plus Thalidomide 100 mg daily.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c. VAD = 109</td>
<td>c. VAD 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d. VCAP = 110</td>
<td>d. VCAP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e.VBAP = 110</td>
<td>e. VBAP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f. VBCMP = 110</td>
<td>f. VBCMP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>g. VBAP = 110</td>
<td>g. VBAP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td>Wijermans 2008</td>
<td>RCT</td>
<td>N = 801</td>
<td>a. MP+ = 149</td>
<td>a. MP+ every 4 weeks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. MP+ plus Placebo = 113</td>
<td>b. MP+ every 4 weeks plus Placebo 100 mg daily.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c. VAD = 250</td>
<td>c. VAD 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d. VCAP = 250</td>
<td>d. VCAP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e. VBAP = 250</td>
<td>e. VBAP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f. VBCMP = 250</td>
<td>f. VBCMP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>g. VBAP = 250</td>
<td>g. VBAP 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. VAD = 116</td>
<td>b. VAD 2 cycles per week for 6 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c. VBCMP = 116</td>
<td>c. VBCMP 2 cycles per week for 6 months.</td>
</tr>
</tbody>
</table>

RCT: Randomized controlled trial. MM: MM's performance status.
MP+: melphalan 90 mg/m² PO days 1-4 + prednisone 60 mg/m² PO or IV days 1-4.
MP+ plus Thalidomide = 152 | a. MP+ = 149 | a. MP+ every 4 weeks. |
	b. MP+ plus Thalidomide = 152	b. MP+ every 4 weeks plus Thalidomide 100 mg daily.
	c. VAD = 109	c. VAD 2 cycles per week for 6 months.
	d. VCAP = 110	d. VCAP 2 cycles per week for 6 months.
	e. VBAP = 110	e. VBAP 2 cycles per week for 6 months.
	f. VBCMP = 110	f. VBCMP 2 cycles per week for 6 months.
	g. VBAP = 110	g. VBAP 2 cycles per week for 6 months.

Criteria for response by the South Western Oncology Group (SWOG):
- **Progression:** Increase in M-protein of at least 1.0 g/dL, a 100% increase in the protein excreted in the urine per 24 h, hypercalcaemia > 11.0 mg/dl, plasmacytomas that enlarge progressively.
- **Relapse:** Rise in M-protein over 50% of the pre-study level; rise in calcium > 11.0 mg/dL, development of plasmacytoma.
Annex 2. Assessment of the risk of bias in RCTs included in the review

<table>
<thead>
<tr>
<th>Study</th>
<th>Sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants, personnel and outcome assessors</th>
<th>Incomplete outcome data/withdrawals</th>
<th>Free of selective reporting</th>
<th>Other sources of bias / commentaries</th>
<th>Overall Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade 1990</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>A number of patients were not evaluable for response to therapy. Adverse events were not reported</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Blade 1993</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Boccadoro 1991</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Hematological and non-hematological adverse events were not reported.</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Cavo 2002</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Cooper 1986</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Facon 2005</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Facon 2008</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Gulbrandsen 2008 (abst.)</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Hansen 1985</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Hernández 2004</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>HOINT 1990</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Hulin 2009</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Baseline characteristics were well balanced except for gender.</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Kildahl-Andersen 1988</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Adverse events were not reported</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Ludwig 2008</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Ostenburg 1989</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Palumbo 2006</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Unclear</td>
<td>Hematological and non-hematological adverse events were not reported for each group.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Paulovský 1984</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>No sample size calculation.</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Pönisch 2006</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Every adverse event was reported (i.e. leukopenia, anemia, thrombocytopenia), however they were not be summarized as “hematological toxicity.”</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Salmon 1983</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>San Miguel 2008</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Shustik 2006</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Tribalto 1985</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>No</td>
<td>Hematological and non-hematological adverse events were not adequately reported.</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Wijermans 2008 (abst.)</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
</tbody>
</table>

Abst: abstract.

Annex 3. Funnel plot
References

6. Jantunen E, Kuittinen T, Pentiäi K, Lehtonen P, Mahlmaniä E, Nousiainen T. High-dose melphalan (200 mg/m²) supported by autologous stem cell transplantation is safe and effective in elderly (> or = 65 years) myeloma patients: comparison with younger patients treated on the same protocol. Bone Marrow Transplant. 2006;37:917-22.

73. Hulin C, Facon T, Rodon P. Melphalan-prednisone-thalidomide (MP-T) demonstrates a significant survival advantage in elderly patients 75 years with multiple myeloma compared with melphalan-prednisone (MP) in a randomized, double-blind, placebo-controlled trial, IFM 01/01. Blood. 2007;110:11a.

TRATAMIENTO DE PRIMERA LÍNEA PARA PACIENTES CON MIELOMA MÚLTIPLE NO ELEGIBLES PARA TRASPLANTE AUTÓLOGO DE CÉLULAS PROGENITORAS: REVISIÓN SISTEMÁTICA Y META-ANÁLISIS (ESTUDIO DEL HEMO-ONCOLGROU

Mynam Rodríguez, Juan Felipe Combariza, Claudia Patricia Casas, Ludovic Revez, Jefferson Buendia, Arturo Marti-Carvajal, Henry Becerra, Andrés Acevedo, Andrés Felipe Cardona

